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Abstract

In this paper we address the design of a relay-assisted communication system
where two half-duplex (HD) users communicate with each other via the help of
an amplify-and-forward (AF) and full-duplex (FD) relay node. We design joint
user beamforming and relay transmit strategies to deal with the self-interference
signal at the FD relay node. Our approach is to maximize the system sum rate
via linear transmit strategies by exploiting multiple antennas at all the involved
nodes. Convex optimization based sub-optimal and optimal solutions are devel-
oped. More specifically, an alternating optimization for self-interference aware
FD relaying (AO) is devised when the transmission of multiple streams is con-
sidered. Moreover, a unified approach via gradient projections is proposed as a
benchmark. It can be applied regardless of the number of antennas at each node
but has a significantly higher computational complexity than the AO algorithm.
Simulation results show that the proposed algorithms can achieve a good perfor-
mance compared to the benchmark algorithm. Moreover, a significant FD gain
is achieved in terms of the sum rate when the residual self-interference power is
smaller than the noise.
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amplify-and-forward.

1. Introduction

Full-duplex (FD) operation is defined as a transceiver’s capability to trans-
mit and receive at the same time and frequency. While FD-enabled communi-
cation schemes are beneficial in many desired aspects (e.g., lower delay, higher
efficiency and security, improved access layer function, ... [2]), they were long
considered to be practically infeasible due to the inherent self-interference. Re-
cently, exploiting specialized cancellation techniques [3–8], FD communications
have been introduced as a possibility for short range applications. In theory,
the loopback self-interference signal is known to the receiver and hence it can be
successfully subtracted from the received signal if i) we have a sufficiently high
dynamic range at the receiver and the transmitter, and ii) we have a perfect
knowledge of the self-interference path, i.e., the channel between the transmit
and the receive antennas of the same node. It is clear that in practice none
of the aforementioned requirements are perfectly satisfied, considering the er-
roneous behavior of the transceiver and more importantly the strength of the
self-interference path compared to the desired channel [9].

In order to address this challenge, more sophisticated methods have been
introduced to deal with the interference in different stages. First, an effective
physical isolation between the transmit and the receive ends must be ensured
for any FD transceiver. This can be achieved via proper separation of the
antennas or via exploiting the antennas’ directivity [10]. Furthermore, we can
exploit the knowledge of the transmit signal as well as the knowledge of the self-
interference channel such that the self-interference is estimated and canceled in
the RF domain. Thereby the main part of interference is suppressed at the
receiver prior to down-conversion, in order to avoid the destructive effects of
the limited dynamic range of the analog-to-digital convertor (ADC), cf. [11, 12].
As shown in [7], digital cancellation methods can also be used to estimate the
residual self-interference components in the receiver-end in order to improve the
cancellation quality.

Other than self-interference cancellation techniques, many papers have fo-
cused on potential applications of FD operation in future communication sys-
tems [13]. This includes identifying appropriate use cases as well as system
optimization in the presence of FD devices. To this end, performance optimiza-
tion of FD-enabled communication systems has been studied for a point-to-
point communication system in [9]. Performance optimization involving a FD
base station has been considered in [14], and the issues regarding physical layer
security have been addressed in [15]. In particular, FD relay-assisted commu-
nication has been investigated to enhance the efficiency of classic half-duplex
relaying schemes [16].

A FD relay is capable of receiving the signal from the source, while simul-
taneously communicating to the destination. This capability not only reduces
the required time slots in order to accomplish an end-to-end communication,
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but also reduces the latency compared to traditionally Time Division Duplex
(TDD)-based half-duplex (HD) relays [16]. Therefore, a FD decode-and-forward
(DF) relaying scheme is studied in [17, 18], regarding the methodologies for re-
lay selection and power allocation, and in [19, 20] in order to maximize the
system sum rate for relays with multiple antennas. Amplify-and-forward (AF)
relays are specially attractive due to their performance and operation simplicity
[21, 22]. Therefore, algorithms for relay selection and power allocation for single-
antenna AF-FD relays have been proposed in [23–27] for various single-antenna
relaying setups, taking into account the effects of residual self-interference at the
relay. Regarding the relaying systems with multiple antenna nodes, schemes to
mitigate the self-interference intensity at the relay via linear transmit strategies
are presented in [28, 29], while algorithms to maximize the end-to-end perfor-
mance are studied in [30–36]. In [32], a minimum-mean-squared-error (MMSE)
approach is derived to design an AF-FD relaying system where perfect self-
interference cancellation is assumed. In [33] a setup with multiple single antenna
users and a relay with multiple transmit antennas and a single receive antenna
is studied. A setup with single antenna users and a multiple antenna AF-FD
relay is studied in [35] from the perspective of joint relay/antenna selection and
performance analysis, and in [37] regarding the joint transmit/receive filter de-
sign, assuming a perfect hardware operation. The work in [34], proposes low
complexity designs for signal-to-interference-plus-noise (SINR) maximization in
an AF-FD relaying system. Nevertheless, a joint user and relay optimization
for the users and a relay with multiple antennas, where digital and analog do-
main self-interference cancellation methods are simultaneously applied, is still
an open problem.

In this paper, we investigate the sum rate3 maximization problem for a
relay assisted communication system with a FD relay and two HD users. Our
main contributions are as follows: In Section 2, we define a system where digital
domain and analog domain cancellation techniques are simultaneously exploited
to benefit from FD transmission. As a result, the limitation of the RF domain
suppression techniques is taken into account as one of our design constraints in
the digital domain. Afterwards, advanced linear transmit strategies for the relay
as well as the end users are derived to maximize the system sum rate in Sections
3 and 4. More precisely, when all the nodes have single antennas, a closed-form
solution is derived. When only the relay has multiple antennas, a rank-one
optimal solution is derived by using semi-definite relaxation. When all the nodes
have multiple antennas, an alternating optimization for self-interference aware
FD relaying (AO) is devised. A reduced-complexity AO (RC-AO) algorithm is
proposed based on the optimal transmit strategy for a point-to-point MIMO
system, i.e., singular value decomposition (SVD) based precoding together with
water-filling based power allocation. To benchmark the proposed algorithms, a

3Please note that the term sum rate may refer to the sum of the communication rates in
different links, or to the sum of communications rates corresponding to different data streams
in a single link. The latter case is the intention of this paper.
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unified design is proposed via gradient projections, which is applicable regardless
of the number of antennas at each node. Numerical simulations are presented
in Section 5.

Throughout this paper, column vectors and matrices are denoted as lower-
case and upper-case bold letters, respectively. The rank of a matrix, expectation,
trace, determinant, transpose, conjugate and Hermitian transpose are denoted
by rank(·), E(·), Tr(·), |·|, (·)T, (·)∗ and (·)H, respectively. The identity matrix
with dimension K is denoted as IK and vec(·) operator stacks the elements of a
matrix into a vector. Moreover, (·)−1 represents the inverse of a matrix and ||·||2
represents the Euclidean norm of a vector. The set of all positive semi-definite
matrices with Hermitian symmetry is denoted by H.

2. System model

In this work we investigate the case where a single pair of HD, multiple-
antenna users communicate with the help of a one-way FD relay as depicted in

Fig. 1. The relay has M
(R)
t transmit and M

(R)
r receive antennas and uses the

AF strategy. Due to the simultaneous transmission and reception of the FD
relay, it only takes a single communication phase to accomplish an end-to-end
communication between a source and a destination node. The source and the
destination nodes are equipped with Mt and Mr antennas, respectively. Our
channels are full-rank, quasi-stationary4 flat-fading, and perfect synchroniza-
tion is assumed among all transmit and receive chains. The channel between

the source and the relay is denoted as HSR ∈ CM(R)
r ×Mt , the channel between

the relay transmit and receiver ends (self-interference channel) is denoted as

HRR ∈ CM(R)
r ×M(R)

t , and the channel between the relay and the destination is

denoted as HRD ∈ CMr×M(R)
t . We assume that perfect channel state informa-

tion is available and the direct channel between the source and the destination
is ignored. We may now formulate the transmitted signal from the source as

x = Fs, (1)

where F ∈ CMt×Mt is the source precoder and s ∈ CMt is our transmitted
data vector (E{ssH} = IMt

). The transmit power constraint at the source has
to fulfill E{‖x‖22} ≤ Pmax, where Pmax represents the maximum transmit power.
The received signal at the relay can be written as

yR = HSRx + nR + HRRxR, (2)

where nR ∈ CM(R)
r denotes the zero-mean complex Gaussian (ZMCG) noise,

where we have E{nRnR
H} = σ2

nrIM(R)
r

. The last term in (2) denotes the received

self-interference where xR ∈ CM
(R)
t represents the transmit signal from the relay.

4It implies that the channel is constant within one frame but may vary from frame to
frame.
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Although recent cancellation methods demonstrate suppression of the self-
interference signal down to the receiver noise floor for short range communi-
cations, e.g., [7] for WiFi 802.11ac, such designs are not yet suitable for high-
power communication schemes. This stems from the fact that while higher
self-interference power requires higher levels of suppression, the involved hard-
ware components tend to become less accurate and closer to saturation as the
power increases. Furthermore, various real-world imperfections, e.g., aging of
the analog circuit elements and limited channel coherence time, or limited esti-
mation accuracy in the digital domain, are inevitable. These effects degrade the
performance of self-interference cancellation techniques [38]. In [38], it has been
observed that different available self-interference cancellation schemes result in
different cancellation capabilities.

In order to take into account the aforementioned limits we assume a resid-
ual self-interference signal with zero mean and a Gaussian distribution, which
increases the receiver noise floor [39, 40]. Furthermore, a constraint on the
suppressible self-interference power is applied according to [41, 42] in order to

define the functional dynamic range of the relay: E{‖HRRxR‖22} ≤ P
(R)
th , where

P
(R)
th is the maximum tolerable self-interference power.5 Note that the role of

the defined threshold is to ensure that the involved hardware components in
the self-interference cancellation process operate in their accurate functional
range, and prevent saturation and nonlinear/undesired behavior. As a result,
it is highly dependent on the implemented self-interference cancellation. In our
work, since the Pth is defined as the maximum average interference power, it
should be chosen by considering a peak-to-average-power-ratio (PAPR) margin,
regarding the hardware components which are sensitive to the instantaneous
power. Thereby, the signal transmitted from the relay can be formulated as

xR = G(HSRx + nR + iR),

E{‖HRRxR‖22} ≤ P
(R)
th , E{‖xR‖22} ≤ P (R)

max, (3)

where iR is a ZMCG residual self-interference with E{iRiRH} = σ2
siIM(R)

r
, and

σ2
r := σ2

nr + σ2
si is the variance of the noise plus residual self-interference.67 The

relay amplification matrix is denoted as G ∈ CM
(R)
t ×M(R)

r and P
(R)
max represents

the maximum transmit power at the relay. Finally, the received signal at the

5Other than the total tolerable self-interference power, we may define the tolerable self-
interference power on each individual receiver chain, on the collective self-interference which
originates from each transmit chain, or on a mixture of the aforementioned cases. The re-
spective choice depends on the implemented self-interference cancellation scheme and the
affordable design complexity.

6In this work a constant σ2
si is assumed within the relay self-interference power range

defined by P
(R)
th , see (3). More accurate models are also available which take into account the

dependence of the residual interference covariance matrix on the instantaneous relay power,
e.g., [24, 25], at the expense of a higher complexity.

7Note that for a given FD transceiver, the appropriate values of Pth and σ2
si can be obtained

by conducting experiments and measurements.
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destination is given as

yD = HRDxR + nD, (4)

where nD is the ZMCG noise with E{nDnD
H} = σ2

ndIMr . In the following we
study the rate maximization problem for the defined scenario.

3. Enhanced transmit strategies at user and relay nodes

In this section, our goal is to maximize the mutual information (MI) among
the end users via a joint design of our transmit precoder (F ) and the relay
amplification matrix (G). The optimization problem is formulated into

max
F ,G

MI (x;yD) (5a)

s.t. E
{
‖x‖22

}
≤ Pmax, (5b)

E{‖xR‖22} ≤ P (R)
max, (5c)

E{‖HRRxR‖22} ≤ P
(R)
th , (5d)

where MI (x;yD) represents the mutual information between the input argu-
ments given the current system parameters (HRD,G,F ,HSR) and (5b-d) rep-
resent the user, relay and the self-interference power constraints, respectively.
The mutual information, given F and G, is calculated as

MI (x;yD) = log2

∣∣∣IMr
+(HRDGHSRF )(HRDGHSRF )H(
σ2

rHRDGGHHH
RD + σ2

ndIMr

)−1
∣∣∣. (6)

Note that (6) is only achievable for sources with a Gaussian distribution and
thus can be viewed as an achievable upper-bound for the end-to-end mutual in-
formation. Benefiting from the results of majorization theory [43] and using the
Karush-Kuhn-Tucker (KKT) conditions for optimality [44], the optimal solution
to (5) with a relaxed interference power constraint (5d) has been provided in
[21, 30, 45]. Although the additional constraint (5d) changes the nature of our
problem, the aforementioned results are still useful for our investigation. In the
following, we solve the non-convex problem (5) under different system settings.

3.1. Special case: Mt = Mr = 1, M
(R)
t = M

(R)
r = 1

In this case all of the desired and interference channels simplify to SISO
channels. Hence, the design of optimal transmit strategies simplifies to a power
adjustment at the relay and at the source node
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max
PT,g

log2

(
1 +

PT|hSR|2|g|2|hRD|2

σ2
r |g|

2|hRD|2 + σ2
nd

)
(7a)

s.t. PT ≤ Pmax, (7b)

PT|hSR|2|g|2 + σ2
r |g|

2 ≤ P (R)
max, (7c)

|hRR|2
(
PT|hSR|2|g|2 + σ2

r |g|
2
)
≤ P (R)

th , (7d)

where PT and g are the user’s transmit power and the relay’s amplification
coefficient, and hSR, hRR, hRD are scalar (SISO) notations of the correspond-
ing channel matrices. Furthermore, we observe that the common component
(PT|hSR|2|g|2 + σ2

r |g|
2
) from (7c), (7d), can be substituted with a single equiv-

alent power constraint

max
PT,g

log2

(
1 +

PT|hSR|2|g|2|hRD|2

σ2
r |g|

2|hRD|2 + σ2
nd

)
(8a)

s.t. PT ≤ Pmax, (8b)

PT|hSR|2|g|2 + σ2
r |g|

2 ≤ min

{
P (R)

max,
P

(R)
th

|hRR|2

}
. (8c)

At this point we observe that in the optimality of (8), the transmit power
constraint is always satisfied with equality for the source node (see Proposition
1 for a detailed discussion). This leaves us with the following single parameter
optimization problem:

max
g

Pmax|hSR|2|g|2|hRD|2

σ2
r |g|

2|hRD|2 + σ2
nd

(9a)

s.t. |g|2 ≤
min

{
P

(R)
max,

P
(R)
th

|hRR|2

}
Pmax|hSR|2 + σ2

r

=: ζ. (9b)

Due to the fact that (9b) bounds |g|2 from above and our cost function is

monotonically increasing with respect to |g|2, we achieve an optimal analytic
solution for g, PT as

|g| =
√
ζ, PT = Pmax. (10)

Note that as the objective value (9a) and the constraint (9b) are both invariant
to the phase of g. Therefore, the phase can be chosen arbitrarily without loss
of optimality. It is worth mentioning that this setup corresponds to the single
user scenario studied in [33] with a single antenna base station, as well as the
investigated power allocation strategies for single antenna FD relays in [24, 25].
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3.2. Special case: Mt = Mr = 1, M
(R)
t ,M

(R)
r > 1

Under this setting, our original problem in (5) can be reformulated as

max
PT,G

log2

(
1 +

PTh
T
RDGhSRh

H
SRG

Hh∗RD

σ2
rh

T
RDGGHh∗RD + σ2

nd

)
(11a)

s.t. PT ≤ Pmax, (11b)

Tr
(
G
[
PThSRh

H
SR + σ2

r IM(R)
r

]
GH
)
≤ P (R)

max, (11c)

Tr
(
HRRG

[
PThSRh

H
SR + σ2

r IM(R)
r

]
GHHH

RR

)
≤ P (R)

th , (11d)

where hSR,h
T
RD are the vector representations of HSR,HRD, respectively.

Proposition 1. At the optimality of (11) the transmit power constraint (11b)
is active (PT = Pmax).

Proof It is observed that the following variable update: ∀κ > 1, PT ← κPT

and G ← G√
κ

increases the value of the objective (11a) while preserving the

feasibility (the relay’s transmit and the interference powers are not increased).
Thus we have PT = Pmax at the optimality.

Proposition 1 simplifies our problem as

max
G

Pmaxh
T
RDGhSRh

H
SRG

Hh∗RD

σ2
rh

T
RDGGHh∗RD + σ2

nd

(12a)

s.t. Tr
(
G
[
PmaxhSRh

H
SR + σ2

r IM(R)
r

]
GH
)
≤ P (R)

max, (12b)

Tr
(
HRRG

[
PmaxhSRh

H
SR + σ2

r IM(R)
r

]
GHHH

RR

)
≤ P (R)

th . (12c)

The above problem is neither convex nor can be solved in closed-form. This
motivates us to resort to a sub-optimal solution. Inspired by the low-rank nature
of our communication scheme (single stream, single antenna end users), in the
following we solve (12) by imposing a rank-1 constraint on G. In this way,
although we lose optimality due to eliminating parts of the feasible set, as it is
presented in Section 5, the resulting performance is very close to our baseline
performance which is defined in Section 4. We incorporate the rank-1 constraint

by assuming without loss of generality (wr ∈ CM(R)
r , wt ∈ CM

(R)
t ):

G = wtw
H
r , ‖wr‖2 = 1, (13)

which redefines our optimization problem as:

max
wr,wt

Pmaxh
T
RDwtw

H
r hSRh

H
SRwrw

H
t h
∗
RD

σ2
rh

T
RDwtwH

t h
∗
RD + σ2

nd

(14a)

s.t. ||wr||2 = 1, (14b)

Tr
(
wtw

H
r

[
PmaxhSRh

H
SR + σ2

r IM(R)
r

]
wrw

H
t

)
≤ P (R)

max, (14c)

Tr
(
HRRwtw

H
r

[
PmaxhSRh

H
SR + σ2

r IM(R)
r

]
wrw

H
t H

H
RR

)
≤ P (R)

th . (14d)
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Proposition 2. The optimal wr in (14) is invariant to the choices of wt and hRD,
and obtained as

w(opt)
r =

hSR

||hSR||2
. (15)

Proof See Appendix 1.

Exploiting the result of Proposition 2, we reformulate (14) as

max
wt

Pmax||hSR||22hT
RDwtw

H
t h
∗
RD

σ2
rh

T
RDwtwH

t h
∗
RD + σ2

nd

(16a)

s.t. Tr
(
wt

[
Pmax||hSR||22 + σ2

r

]
wH
t

)
≤ P (R)

max, (16b)

Tr
(
HRRwt

[
Pmax||hSR||22 + σ2

r

]
wH
t H

H
RR

)
≤ P (R)

th . (16c)

At this point, by observing the fact that our cost function in (16a) is monoton-
ically increasing with respect to the term hT

RDwtw
H
t h
∗
RD, we write our problem

as

max
wt

Tr
(
wtw

H
t h
∗
RDh

T
RD

)
(17a)

s.t. Tr
(
wtw

H
t

)
≤ P (R)

max/c0, (17b)

Tr
(
wtw

H
t H

H
RRHRR

)
≤ P (R)

th /c0, (17c)

where c0 := Pmax||hSR||22 + σ2
r . In order to modify the above problem into an

efficient convex structure, we define Q̂ := wtw
H
t and reformulate (17) into

max
Q̂∈H

Tr
(
H̄RDQ̂

)
(18a)

s.t. Tr
(
Q̂
)
≤ P (R)

max/c0, Tr
(
H̄RRQ̂

)
≤ P (R)

th /c0, (18b)

where H̄RD := h∗RDh
T
RD, H̄RR := HH

RRHRR. It is clear that any rank-1 optimal

solution for Q̂ results in an optimal wt. Following Corollary 3.4 in [46], we can

always achieve an optimal rank-1 solution for Q̂ ∈ H for (18), which results in
an optimal wt. Consequently, the optimal rank-1 G is obtained as

wt = Q̂
1
2 , G = wtw

H
r . (19)

In Section 5 it is illustrated that the performance of the proposed rank-1 solution
is very close to the achieved baseline performance.

3.3. General case: Mt = Mr, M
(R)
r = M

(R)
t =: MR > 1

The general optimization problem is formulated as:

max
F ,G

MI (x;yD) (20a)

s.t. Tr
(
FFH

)
≤ Pmax, (20b)

Tr
(
G
[
HSRFFHHH

SR + σ2
r IMR

]
GH
)
≤ P (R)

max, (20c)

Tr
(
HRRG

[
HSRFFHHH

SR + σ2
r IMR

]
GHHH

RR

)
≤ P (R)

th , (20d)
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where MI (x;yD) is defined in (6). Once again, we are dealing with a non-convex
optimization problem. Concerning computational complexity, we propose two
sub-optimal solutions in the following.

3.3.1. Alternating Optimization for self-interference aware FD relaying (AO)

In order to deal with the non-convex problem (20), we choose an iterative
optimization over the precoder (F ) and the relay amplification matrix (G). In
each step, one of the F or G is optimized assuming that the other matrix is
fixed. This process is continued until a stable pair of F ,G is achieved. As the
first iteration we solve our optimization problem over F assuming a fixed G:

max
F

MI (x;yD) (21a)

s.t. Tr
(
FFH

)
≤ Pmax, (21b)

Tr
(
G
[
HSRFFHHH

SR + σ2
r IMR

]
GH
)
≤ P (R)

max, (21c)

Tr
(
HRRG

[
HSRFFHHH

SR + σ2
r IMR

]
GHHH

RR

)
≤ P (R)

th . (21d)

This problem can be equivalently formulated as a convex optimization problem
by defining Q := FFH as

max
Q∈H

log2

∣∣B1QBH
1 + Bn

∣∣ (22a)

s.t. Tr (Q) ≤ Pmax, (22b)

Tr
(
B2QBH

2

)
≤ ξ1, Tr

(
B3QBH

3

)
≤ ξ2, (22c)

where:

B1 := HRDGHSR, B2 := GHSR, (22d)

B3 := HRRGHSR, Bn := σ2
rHRDGGHHH

RD + σ2
ndIMr

, (22e)

ξ1 := P (R)
max − Tr

(
σ2

rGGH
)
, ξ2 := P

(R)
th − Tr

(
σ2

rHRRGGHHH
RR

)
.

(22f)

The above problem possesses a convex structure. Therefore, we can get an
optimal Q ∈ H, and consequently an optimal F as F = Q

1
2 . The next step is

to compute an optimal G, given the precoder F . The corresponding problem
is formulated as

max
G

MI (x;yD) (23a)

s.t. Tr
(
G
[
HSRFFHHH

SR + σ2
r IMR

]
GH
)
≤ P (R)

max, (23b)

Tr
(
HRRG

[
HSRFFHHH

SR + σ2
r IMR

]
GHHH

RR

)
≤ P (R)

th . (23c)

The transmit power constraint is dropped because it is not a function of F . Note
that at the optimality of problem (23a-c) at least one of the constraints has to
be active, i.e., the constraint is satisfied with equality. Otherwise, we can scale
G up such that the optimal value increases. This contradicts the optimality.
This motives us to solve problem (23a-c) by solving three sub-problems, i.e.,
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one of the constraints ((23b) or (23c)) is active, or both constraints are active.
At this point we recall that the KKT conditions have been studied in [30] for
the problem defined by (23a-b). Inspired by [30], we first consider the special
case that our system is dominated by the level of allowed transmit power and
thus the interference power constraint can be dropped:

max
G

MI (x;yD) (24a)

s.t. Tr
(
G
[
HSRFFHHH

SR + σ2
r IMR

]
GH
)
≤ P (R)

max, (24b)

which results in an optimal G via the solution in [30]. If the resulting G does
not violate the self-interference constraint, we have already obtained an optimal
relay amplification matrix for (23). If the resulting G is not feasible, we then
investigate the other extreme case in which our problem is dominated by the
allowed interference power. Our optimization problem turns into

max
G

MI (x;yD) (25a)

s.t. Tr
(
HRRG

[
HSRFFHHH

SR + σ2
r IMR

]
GHHH

RR

)
≤ P (R)

th , (25b)

where the self-interference power constraint (25b) is active at the optimality8.
By defining the following auxiliary variables:

G
′

:= HRRG, H
′

RD := HRDH
−1
RR, (26)

we turn (25) into

max
G′

log2

∣∣∣H ′

RDG
′
HSRFFHHH

SRG
′H
H
′

RD

H
+ σ2

rH
′

RDG
′
G
′H
H
′

RD

H
+ σ2

ndIMr

∣∣∣
− log2

∣∣∣σ2
rH

′

RDG
′
G
′H
H
′

RD

H
+ σ2

ndIMr

∣∣∣ = MI
′
(x;yD) (27a)

s.t. Tr
(
G
′ [
HSRFFHHH

SR + σ2
r IMR

]
G
′H
)
≤ P (R)

th , (27b)

where MI
′
(x;yD) represents the mutual information between x,yD given H

′

RD,

G
′
,F ,HSR. The above problem follows the same structure as problem (24) and

an optimal G
′

can be obtained using the iterative method in [30]. The optimum
G can be then computed as

G = H−1
RRG

′
, (28)

which is the inverse representation of (26). Once again, we check if the solution
is feasible. If the transmit power constraint is not violated, the achieved G

8Please note that the constraint (24b) is active at the optimality of (24a-b). Otherwise, we
can scale G up such that the optimal value increases, which contradicts with optimality. The
same argument holds for the constraint (25b) in (25a-b), which represents the case where the
self-interference power constraint is active.
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is optimal for (23). If the resulting G is not feasible, we resort to a subopti-
mal solution for G, where both constraints (23b) and (23c) are satisfied with
equality9.

In order to design our sub-optimal approach, we recall that the solutions to
(24) and (25) exploit the allowed transmit and interference power in an optimal
fashion, respectively. Hence, when both of the constraints are active, the choice
of G must be a trade-off between the results from (24) and (25). Therefore we
define

Γ := G
[
HSRFFHHH

SR + σ2
r IMR

]
GH, (29)

where Γ represents the resulting relay’s transmit covariance matrix. The matrix
G can then be calculated as

G = Γ
1
2
[
HSRFFHHH

SR + σ2
r IMR

]− 1
2 . (30)

Let the relay transmit covariance matrix obtained by solving (24) and (25) be
Γ1 and Γ2, respectively. We look for a linear combination of them (Γ?) in a
way that both constraints in (23b) and (23c) are satisfied with equality:

Γ? = α1Γ1 + α2Γ2, α1, α2 ∈ R, (31)

where α1 and α2 are the corresponding weights which should be determined.
Then we have

Tr (Γ?) = Tr (α1Γ1 + α2Γ2) = P (R)
max

⇒ α1Tr (Γ1) + α2Tr (Γ2) = P (R)
max, (32a)

Tr
(
H̄RRΓ?

)
= Tr

(
α1H̄RRΓ1 + α2H̄RRΓ2

)
⇒ α1Tr

(
H̄RRΓ1

)
+ α2Tr

(
H̄RRΓ2

)
= P

(R)
th . (32b)

where H̄RR := HH
RRHRR. By defining the auxiliary constants (β1, β2 > 1) as

β1 :=
Tr (Γ2)

P
(R)
max

, β2 :=
Tr
(
H̄RRΓ1

)
P

(R)
th

, (33)

and applying (33) to (32) we have:

α1 + α2β1 = 1, α2 + α1β2 = 1, (34a)

⇒ α1 =
β1 − 1

β1β2 − 1
, α2 =

β2 − 1

β2β1 − 1
. (34b)

9Other primitive sub-optimal solutions would be the scaled versions of the solutions to
(24) and (25), where the relay’s transmit power constraint or the self-interference constraint
is active, respectively. The case with two active constraints is studied in (29)-(34) using a low
complexity solution.
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Then by using (31) and (30) we obtain the desired Γ? and G. Note that the re-
sulting G is sub-optimal and satisfies both the relay’s transmit power constraint
and the interference power constraint. This procedure, i.e., the alternating de-
sign of F and G, is continued until no further improvement is observed in the
objective value (20a). The proposed AO method is summarized in Algorithm 1.

The proposed AO algorithm can be computationally inefficient, especially
when none of the basic power constraints dominates. This motivates us to
calculate F and G sequentially. The proposed sequential method is also used
as the initialization step for the AO algorithm. Fig. 7 illustrates the convergence
speed of the proposed AO algorithm under different system parameters.

3.3.2. The Reduced-Complexity AO (RC-AO) design of F and G

This method is composed of two separated designs for the precoder and
the relay amplification matrix. In the first stage, the precoder is designed to
maximize the mutual information between the transmitter and the relay node.
This is performed via optimal power allocation on the singular modes of HSR,
i.e., by using the water-filling algorithm in [44]. In the second stage, given
the resulting F , we design G by applying the proposed steps in (23)-(34). In
Section 5, we observe that the performance of this method is close to that of
the alternating AO solution when the system dynamic range is very low or very
high.

4. A unified design via gradient projections

As we have observed in the previous sections, due to the non-convex nature of
our problem, we have to resort to sub-optimal methods in parts of our solutions.
In order to provide a baseline for the performance evaluation, we introduce an
iterative gradient projection based optimization to find a jointly stable point for
F and G. Although we may not guarantee the global optimality via a gradient
projection-based approach, we will ensure that the optimum performance is not
far from the achieved one by repeating the procedure with multiple initialization
points. Please note that the provided design in this part is applicable to a general
setup, regardless of the number of antennas at the different nodes. We begin our
method by calculating the gradient of the cost function with respect to F ∗,G∗

(see Appendix 3):

∂MI (x;yD)

∂G∗
=

1

ln(2)

{
HH

RDA
−1
1 HRDG

[
HSRFFHHH

SR + σ2
r IM(R)

r

]
− σ2

rH
H
RDA

−1
2 HRDG

}
, (35a)

∂MI (x;yD)

∂F ∗
=

1

ln(2)

{
HH

SRG
HHH

RDA
−1
1 HRDGHSRF

}
, (35b)

where A2 := σ2
rHRDGGHHH

RD+σ2
ndIMr

and A1 := HRDGHSRFFHHH
SRG

HHH
RD + A2.

The natural logarithm is represented by ln(·). Using the above gradients, we
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define the update equations as follows (in each iteration only one of the matrices
is updated):

∆F =
∂MI (x;yD)

∂F ∗
· δf , Fnew = Fold + ∆F , (36a)

∆G =
∂MI (x;yD)

∂G∗
· δg , Gnew = Gold + ∆G, (36b)

where δf , δg ∈ R represent the step-size values which are determined in each
iteration by a line search based on Armijo’s step-size rule [47].

For the defined update matrices, we must guarantee that the corresponding
update does not violate the power constraints (20b-d). In order to fulfill this
requirement, we calculate the projection matrix to the non-power-increasing
region (for both ∆F and ∆G). In this way, once an update matrix defined by
(36) violates one of our power constraints, we project it to the feasible region.
In order to derive the projection matrices we first formulate the user and relay’s
transmit and interference power values as a function of F and G:

P (Relay) = Tr
{
GHSRFFHHH

SRG
H + σ2

rGGH
}
, (37a)

P (Tx) = Tr
{
FFH

}
, (37b)

P (Int) = Tr
{
HRRGHSRFFHHH

SRG
HHH

RR + σ2
rHRRGGHHH

RR

}
, (37c)

where P (Relay), P (Tx), P (Int) represent the relay’s actual transmit power, the
transmit power from the source, and the interference power, respectively. Us-
ing simple matrix calculations, it is possible to calculate the gradients of the
formulated powers with respect to F and G as follows: (see Appendix 3)

∂P (Tx)

∂F ∗
= F , (38a)

∂P (Tx)

∂G∗
= 0, (38b)

∂P (Relay)

∂F ∗
= HH

SRG
HGHSRF , (38c)

∂P (Relay)

∂G∗
= GHSRFFHHH

SR + σ2
rG, (38d)

∂P (Int)

∂F ∗
= HH

SRG
HHH

RRHRRGHSRF , (38e)

∂P (Int)

∂G∗
= HH

RRHRRG
[
σ2

r IM(R)
r

+ HSRFFHHH
SR

]
. (38f)

Exploiting the calculated gradients, we calculate the desired projection matrices
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and the corresponding projections as follows:

Π(C)
g := I

M
(R)
r M

(R)
t
− p̄

(C)
g p̄

(C)H
g

p̄
(C)H
g p̄

(C)
g

, (39a)

Π
(C)
f := IMtMt −

p̄
(C)
f p̄

(C)H
f

p̄
(C)H
f p̄

(C)
f

, (39b)

vec
(

∆F (Feasible)
)

= Π
(C)
f vec

(
∆F (Infeasible)

)
, (39c)

vec
(

∆G(Feasible)
)

= Π(C)
g vec

(
∆G(Infeasible)

)
, (39d)

where p̄
(C)
g := vec

(
∂P (C)

∂G∗

)
, p̄

(C)
f := vec

(
∂P (C)

∂F ∗

)
. The projection matrices

are denoted as Π, and C ∈ {Relay, Int,Tx} refers to the power constraints
corresponding to (37a), (37b), (37c), respectively. This update procedure (35-
39) is continued until a stable point is achieved and repeated for multiple initial
choices of F ,G to avoid (with higher confidence) the convergence into local
stationary points.

5. Simulation Results

In this section we evaluate the derived transmit strategies using Monte Carlo
simulations. For a FD device with a very high self-interference cancellation
capability, the traditional HD transmit strategies are optimal in the FD case.
In the following we study how a FD-specific design helps our system when the
self-interference cancellation quality is limited. An un-correlated Rayleigh flat-
fading channel model is used, where ρSR, ρRR, ρRD ∈ R+ represent the variance
of the source-to-relay, relay-to-relay (self-interference), and relay-to-destination
channel coefficients, respectively. We average the simulation results over 1000
channel realizations. We evaluate the effects of different noise and residual
interference levels (σ2

n := σ2
nr = σ2

nd, Pmax = 0 dBW, and SNR := Pmax

σ2
n

), the

effect of the strength of the interference channel (ρRR), the maximum allowed
self-interference power that can be handled by the implemented cancellation

scheme (ε :=
P

(R)
th

Pmax
), the level of inevitable residual self-interference after self-

interference cancellation (SIR := Pmax

σ2
si

), and the numbers of antenna elements

at the users (Mt,Mr) and at the relay node (MR). In each case, we compare
the resulting performance with that of the traditional HD setup (with the same
number of transmit and receive chains as in the FD scenario) to illustrate the
FD gain in different scenarios.

5.1. Single antenna users, multiple antenna relay

For the case with single antenna users, our simulations include the proposed
method with an optimal rank-1 relay amplification matrix (FD-SDR), the gra-
dient based optimization in Section 4 (FD-GP), and the HD precoding method
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which is a scaled version of the traditional optimal HD transmit strategy such
that the self-interference constraint is satisfied with equality (FD-ScaledHD).

Fig. 2 and Fig. 3 demonstrate the achievable sum rate as a function of the
SNR. The proposed rank-1 solution (FD-SDR) performs very close to the general
rank solution based on gradient projection (FD-GP) for all noise levels. This
convergence is particularly observed in Fig. 3 for different number of antennas
at the relay. Furthermore, a significant FD gain in terms of sum rate can be
achieved in the high SNR regime or when the number of antennas at the relay
is large. Moreover, all the proposed methods outperform the scaled version of
the optimal HD transmit strategy.

In Fig. 4 and Fig. 5 we show the achievable sum rate of different algorithms
as a function of dynamic range and the interference channel intensity, respec-
tively. Fig. 4 illustrates that a two-fold gain can be obtained if the dynamic
range is large. Moreover, as the number of antennas at the relay increases, the
difference between the proposed solutions and the scaled HD solution increases.
It is clear that as the interference channel intensity increases, a higher dynamic
range is needed at the relay to provide the same performance. The same per-
formance trend is observable in Fig. 5. The achievable FD gain increases as
the interference channel intensity becomes small. If the number of the antennas
at the relay is large, a larger FD gain is obtained. In both figures the rank-1
beamformer matches the gradient projection based method.

Fig. 6 demonstrates the achievable sum rate as a function of the SIR. Similar
to Figs. 2, 4 and 5, the proposed rank-1 solution (FD-SDR) performs very close
to the general rank solution based on gradient projection (FD-GP) for all SIR
levels. Furthermore, it is observable that a FD gain in terms of sum rate can
be only achieved if the residual interference power is much smaller than the
noise. For large values of the SIR, the FD system performance is dominated
by the noise and no significant change is observable. Since the HD setup does
not suffer from residual self-interference, its performance remains constant for
all SIR values.

5.2. Multiple antenna users, multiple antenna relay

When both the users and the relay have multiple antennas, we compare the
performance of the proposed AO algorithm in Section 3 (FD-AO), the sequential
method RC-AO in Section 3 (FD-RC-AO), the gradient based algorithm (FD-
GP) in Section 4, and the scaled version of optimal HD design (FD-ScaledHD).
The performance of the baseline scenario, i.e., the performance of an equivalent
HD system (HD) is also included.

In Fig. 7 the required number of iterations for the AO algorithm to obtain
a stable pair of the user precoder and the relay amplification matrix is plotted.
It is observed that the algorithm provides a faster convergence speed when the
limited dynamic ranges are very high or very low. These correspond to the
cases where one of the constraints dominates, i.e., only (24) or (25) needs to
be solved. In this case, only a few iterations are needed. Furthermore, a larger
number of antennas results in a slightly slower convergence as the dimension of
the solution space increases.
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Fig. 8 demonstrates the achievable sum rate of different algorithms when
the SNR values vary. The gradient projection based method provides the best
performance. The AO has a performance close to the gradient projection algo-
rithm especially when the number of the antennas at the relay is small. The
low complexity method RC-AO performs almost the same as the AO method re-
gardless of the number of antennas at the relay. Again, the proposed algorithms
outperform the scaled optimal HD design. Interestingly, compared to the HD
baseline scenario, a significant FD gain is always obtained. This suggests that
when all the nodes have multiple antennas the system gains more from a FD
operation at the relay.

Fig. 9 and Fig. 10 show the system sum rate as a function of the limited
dynamic range and the number of antennas at the relay, respectively. As seen
in Fig. 9, when the number of antennas at the relay is large, the scaled optimal
HD design suffers more from a low dynamic range value compared to the other
algorithms. Moreover, the low-complexity RC-AO algorithm provides a good
trade-off between the performance and the computational complexity. However,
it suffers from a little loss when the limited dynamic range is large. Fig. 10 illus-
trates that the gradient projection based method provides the best performance
among the proposed algorithms. The difference between the performance of
the gradient projection algorithm and the other algorithms increases as MR

increases. However, the gradient projection based solution has the worst com-
putational complexity as illustrated in the next section. Again, a two-fold FD
gain is obtained when the limited dynamic range is high or when the number of
antennas at the relay is large.

Fig. 11 demonstrates the achievable sum rate as a function of the SIR. Sim-
ilar to Fig. 6, it is observable that a FD gain in terms of sum rate can only
be achieved if the residual interference power is much smaller than the noise.
Furthermore, as the number of antennas increases, the FD setup outperforms
the equivalent HD setup with a smaller SIR. This is expected as the signal space
can be better separated from the residual interference as the signal dimension
increases. For large values of the SIR, the FD system performance is dominated
by the noise and no significant change is observable. The performance of the
HD setup remains constant for every SIR as it does not suffer from the residual
self-interference.

5.3. Computational complexity

In this part we discuss the computational complexity of the proposed meth-
ods. As the overall computational complexity of the iterative algorithms de-
pends also on their convergence speed which is not known in general, we use
the following parameters so that the computational burden of all the proposed
algorithms are visualized in a better way. We denote the required number of
iterations for the gradient projection based algorithm (FD-GP) to achieve a
stable point as ζ1, while ζ2 represents the number of initial points for which
the gradient search is repeated. The required number of iterations for the AO
method is denoted as ζ3 and the number of required line search steps in (36a)
and (36b) is denoted as ζ4. Furthermore, the required number of iterations for
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the convex solver to achieve the desired numerical accuracy for problems (18)
and (22) are denoted as L1 and L2, respectively. Note that the values of these
parameters, i.e., ζ1, ζ3, L1, L2, are highly dependent on the desired numerical
accuracy. A more detailed analysis of the relationship between the numerical
accuracy and the number of required iterations is found in [44, 47]. But it is out
of the scope of this paper. Tables 1-4 present the computational complexity of
the proposed algorithms using both the approximate number of required floating
point operations and the required CPU time10. Clearly, among the proposed
algorithms, the gradient projection algorithm has the highest computational
complexity. When all the nodes have multiple antennas, the RC-AO algorithm
requires the lowest CPU time.

6. Conclusion

In this work we focus on FD enhancements for a relay-assisted commu-
nication environment which allows the HD operation of the end users (HD-
compatible FD relaying). Enhanced transmit strategies for the users as well as
the relay node are derived to maximize the system sum rate. For the case that
all nodes have a single antenna, the optimal power levels for the transmitter and
the relay nodes are derived. For the scenario with a single antenna user and a
multi-antenna relay, we have obtained an optimal rank-1 relay amplification ma-
trix which performs very close to the optimal solution using gradient projection
techniques. When all the nodes are equipped with multiple antennas, we have
developed the alternating optimization for FD relaying with self-interference
(AO) algorithm to iteratively design the relay amplification matrix and the
beamformers at the user terminals. Alternatively, we have also proposed a low
complexity and independent design via the reduced-complexity AO (RC-AO) al-
gorithm. Moreover, a unified approach via gradient projections is proposed as a
benchmark. It can be applied regardless of the number of antennas at each node
at the expense of significantly higher computational complexity than the AO
algorithm. The performance of all the proposed methods and the corresponding
computational complexities are then compared to the proposed gradient-based
optimization via numerical simulations. It is observed that while the system
performance suffers as the self-interference suppression quality decreases, the
proposed designs provide a decent robustness against this degradation. As ex-
pected, we observe a gain in terms of the system sum rate by a factor of two, if
the relay has a high self-interference cancellation capability.

10Please note that the values for the required CPU time enable a comparison between the
computational complexity for different algorithms. Nevertheless they may vary depending on
the used software/hardware simulation platforms. Our numerical results are obtained using
an Intel Core i5-3320M processor with the clock rate of 2.6 GHz and 8 GB of random-access
memory (RAM). As our software platform we have used MATLAB 2013a, on a 64-bit operating
system.
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Appendices

Appendix 1: Proof to Proposition 2

Let w̄t, w̄r be an optimal solution for (14). We define the following variable
update

w?
r =

hSR

||hSR||2
, w?

t = w̄t ·
1√
ψ
, (41a)

ψ :=
w?
r

HhSRh
H
SRw

?
r

w̄r
HhSRhH

SRw̄r
=

||hSR||22
w̄r

HhSRhH
SRw̄r

, (41b)

where ψ ≥ 1 is observable from (41b) based on the fact that ‖w̄r‖2 = 1, and
hence the denominator is upper-bounded by ||hSR||22. In the following we study
the effect of the defined update on the objective (14a) and on the problem
constraints (14c), (14d). By substituting (41) into (14a) we have

updated (14a) =
ψ · 1

ψ · Pmax · hT
RDw̄tw̄r

HhSRh
H
SRw̄rw̄t

Hh∗RD

1
ψ · σ2

rh
T
RDw̄tw̄t

Hh∗RD + σ2
nd

(ψ≥1)

≥ Old (14a).

(41)

On the other hand we need to verify the feasibility of our new variable set. By
substituting (41) into (14c,d) we have

updated P (Tx) = Tr

(
1

ψ
w̄tw̄

H
r [ψPmaxhSRh

H
SR + σ2

r IM(R)
r

]w̄rw̄
H
t

)
= Tr

(
w̄tw̄

H
r [PmaxhSRh

H
SR +

1

ψ
· σ2

r IM(R)
r

]w̄rw̄
H
t

)
≤ old P (Tx) ≤ P (R)

max,

(43a)

updated P (Int) = Tr

(
HRR

1

ψ
w̄tw̄

H
r [ψPmaxhSRh

H
SR + σ2

r IM(R)
r

]w̄rw̄
H
t H

H
RR

)
= Tr

(
HRRw̄tw̄

H
r [PmaxhSRh

H
SR +

1

ψ
· σ2

r IM(R)
r

]w̄rw̄
H
t H

H
RR

)
≤ old P (Int) ≤ P (R)

max.

(43b)

The improvement in (42) as well as the feasibility of (43) suggest that the choice
of wr = hSR

||hSR||2 is optimal for (14).

Appendix 2: Gradient details of (35a), (35b)

The goal is to calculate the derivatives of mutual information function (6)

MI (x;yD) = log2 |A1| − log2 |A2| , (43)

with defined matrices A1 and A2 in (35). Now, we may formulate the differ-
entiation and consequently the derivative of our mutual information function
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with respect to F ∗ as following (applying Wirtingers calculus [48–50] and some
famous matrix equalities [51]): The differentiation of the mutual information
function can be written as:

∂MI (x;yD) = ∂log2|A1| − ∂log2|A2|

=
1

ln(2)∂F ∗
· Tr

(
A−1

1 · ∂A1

)
− 1

ln(2)
· Tr

(
A−1

2 · ∂A2

)
⇒

∂MI (x;yD)

∂F ∗
=

1

ln(2)∂F ∗
·
[
Tr
(
A−1

1 HRDGHSRF · ∂FHHH
SRG

HHH
RD

)
+ Tr(A−1

2 · 0)
]

=
1

ln(2)∂F ∗
· Tr

(
HH

SRG
HHH

RDA
−1
1 HRDGHSRF · ∂FH

)
∂MI (x;yD)

∂G∗
=

1

ln(2)∂G∗
·
[
Tr
(
A−1

1 HRDGHSRF · FHHH
SR∂G

HHH
RD

)
+ Tr

(
A−1

1 σ2
rHRDG∂G

HHH
RD

)
− Tr

(
A−1

2 σ2
rHRDG · ∂GHHH

RD

) ]
=

1

ln(2)∂G∗
Tr
[(
HH

RDA
−1
1 HRDGHSRFFHHH

SR

+ HH
RDA

−1
1 σ2

rHRDG−HH
RDA

−1
2 σ2

rHRDG
)
∂GH

]
, (44)

which consequently result in the equations (35a) and (35b).

Appendix 3: Gradient details of (38)

Recalling (37a-c), the differentiation of the system power constraints with
respect to F ∗ can be written as

∂P (Relay) = Tr
{
GHSRF · ∂FH ·HH

SRG
H
}

= Tr
{
HH

SRG
HGHSRF · ∂FH

}
,

(46a)

∂P (Tx) = Tr{F ∂FH}, (46b)

∂P (Int) = Tr
{
HRRGHSRF · ∂FH ·HH

SRG
HHH

RR

}
= Tr

{
HH

SRG
HHH

RRHRRGHSRF · ∂FH
}
, (46c)

which results in identities (38a), (38c) and (38e). Similar differentiations can
be achieved with respect to G∗ as

∂P (Relay) = Tr
{
GHSRFFHHH

SR∂G
H + σ2

rG · ∂GH
}

= Tr
{

[GHSRFFHHH
SR + σ2

rG] · ∂GH
}
, (47a)

∂P (Tx) = Tr{0}, (47b)

∂P (Int) = Tr
{
HRRGHSRFFHHH

SR · ∂GH ·HH
RR + σ2

rHRRG · ∂GH ·HH
RR

}
= Tr

{
[HH

RRHRRGHSRFFHHH
SR + σ2

r ·HH
RRHRRG] · ∂GH

}
,

(47c)

which result in identities (38b), (38d) and (38f).
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Algorithm 1 The alternating optimization for FD relaying with self-
interference (AO) design of F ,G.

1: UsrΣsrV
H

sr ← SVD (HSR)
2: F ← VsrΣ

?, Σ? ← Water-Filling [44]
3: k ← 1
4: while |res(k)− res(k − 1)| > 1e− 3 do
5: k ← k + 1
6: G← solution to (24);
7: if (G is not feasible) then
8: G0 ← G/s0; (scaling down to satisfy (23c))
9: G← solution to (25);

10: if (G is not feasible) then
11: G1 ← G/s1; (scaling down to satisfy (23b))
12: G2 ← calculated from (30)-(34);

13: G← max
G∈{G0,G1,G2}

MI
(
x;yD

∣∣
HRD,G,F ,HSR

)
14: end if
15: end if
16: F ← calculate via convex optimization (22);
17: res(k)← calculate the objective via (6);
18: end while
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Figure 1: A one-way full-duplex (FD) relaying system. A source node communicates with
a destination node with a help of a FD relay. The arrow (HRR) represents the loopback
self-interference path between the relay transmitter and receiver ends.
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Figure 2: Sum Rate [bits/sec/Hz] vs. SNR [dB]. ρSR = ρRD = 0 dB, ρRR = 20 dB, Mr =

Mt = 1,M
(R)
r = M

(R)
t = MR, ε = 5 dB, σ2

si = 0. Similar performance is observed for the
rank-1 design, and the gradient projection based optimization.
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t = MR, ε = 5 dB, σ2

si = 0. Similar performance is observed for the
rank-1 design and the gradient projection based optimization, with larger antenna array at
the relay.
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Figure 4: Sum Rate [bits/sec/Hz] vs. ε [dB]. ρSR = ρRD = 0 dB, ρRR = 20 dB, Mr = Mt =

1,M
(R)
r = M

(R)
t = MR, SNR = 10 dB, σ2

si = 0. The FD gain decreases as the dynamic range
decreases. For a system with a high dynamic range, the two-fold gain is observable with FD
operation.
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Table 1: Required number of floating point operations for different design algorithms.

FD-GP FD-SDR

Floating Point

Operations
O

(
2ζ1ζ2MR

3 + 39ζ1ζ2MR
2 + 13ζ1ζ2MR

)
O

(
(21 + L1)MR

3 + 10MR
2 + 9MR

)
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Table 2: CPU Time [sec.] for different MR. ζ2 = 10.

FD-GP FD-SDR

MR = 2 46.07 0.324

MR = 4 114.95 0.684
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Table 3: Required number of floating point operations for different design algorithms.

FD-GP AO RC-AO

Floating Point

Operations

O
(
4ζ1ζ2MR

4 + (33ζ1ζ2ζ4 + 165ζ1ζ2)MR
3

+54ζ1ζ2MR
2 + 31ζ1ζ2MR

) O
(
ζ3 (78 + 3L2)MR

3

+ζ3 (29 + 9L2)MR
2 + 26ζ3MR

) O
(
56MR

3

+2MR
2 + 3MR

)
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Table 4: CPU Time [sec.] for different MR. ζ2 = 10.

FD-GP AO RC-AO

MR = 2 271.31 2.09 0.35

MR = 4 803.09 4.60 0.89
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