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Abstract—We consider a full duplex (FD) multiple-input
multiple-output (MIMO) underlay cognitive radio (CR) cellular
network, in which an FD secondary base-station (BS) serves
multiple half-duplex (HD) uplink (UL) and downlink (DL)
secondary users (SUs) at the same time and frequency. We
assume that the channel state information (CSI) available at the
transmitters is imperfect, and the errors of the CSI are assumed
to be norm bounded. Under the impact of channel uncertainty,
we address the sum mean-squared-errors (MSE) minimization
problem subject to individual power constraints at the UL SUs,
a total power-constraint at the secondary BS, and the interference
constraints on the primary users (PUs) by the secondary network.
By transforming the problem into an equivalent semidefinite
programming (SDP), we propose an iterative alternating algo-
rithm to compute the transceiver matrices jointly. Moreover, to
reduce the high computational complexity of the SDP method,
we develop a cutting-set method, which solves the problem by
alternating between an optimization step (transceiver design) and
a pessimization step (worst-case channel analysis). Numerical
results are presented to show the effectiveness and robustness
of the proposed algorithms.

Keywords—Cognitive radio, full-duplex, MIMO, MSE, multi-
user, self-interference, robust transceiver designs.

I. INTRODUCTION

W ITH the dramatic increase in the demand for wireless
communication services, the efficient utilization of the

available spectrum resources becomes crucial, and motivates
the realization of new solutions. In particular, a full-duplex
(FD) transceiver is able to transmit and receive at the same time
and the same frequency, and hence has the potential to enhance
the spectral efficiency. As a result it is widely considered as
a candidate technology for future communication systems [2].
Nevertheless, FD systems suffer from the inherent interference
from their own transmit signal, i.e., self-interference (SI).
In order to avoid the SI, the currently deployed wireless
communication systems operate in half-duplex (HD) mode by
allocating orthogonal channels for transmission and reception.
This is usually realized by separating the channels via the well
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known time division duplexing (TDD), or frequency division
duplexing (FDD) schemes.

Recently, it has been experimentally demonstrated that the
overwhelming SI in an FD transceiver can be sufficiently mit-
igated by simultaneously implementing cancellation schemes
including antenna design, and analog and digital domain SI
cancellation techniques [3]-[5]. However, consideration of a
residual SI is still necessary, due to the inherent imperfection
of the transmit and receive chains [6]-[13]. Moreover, the
interference from the uplink (UL) to downlink (DL) users, i.e.,
the co-channel interference (CCI), is another challenge for the
gainful use of FD technology. In this respect, the application
of beamforming techniques are known to be effective, where
the impact of the CCI, as well as the SI are jointly taken into
consideration [14], [15].

Furthermore, cognitive radio (CR) is another promising
technology that can enhance spectrum efficiency [16], [17]. In
an underlay CR system, unlicensed secondary users (SUs) can
access the spectrum owned by the licensed primary users (PUs)
as long as the interference level from SUs to PUs is maintained
to meet the Quality-of-Service (QoS) requirements for the
PUs. In practice, it is quite difficult to obtain the estimates
of the channels in CR systems due to the time varying and
random nature of wireless channel, and the lack of full SU-PU
communication. In this regard, there are two approaches which
are commonly used to model the channel state information
(CSI) error. Firstly, the stochastic approach, where the channel
is usually modeled as a complex random matrix with normally
distributed elements, and the transmitter knows the mean
and/or the covariance, i.e., the slowly-varying channel statistics
that can be well estimated [18]. Secondly, the deterministic
(or worst-case) approach, where the instantaneous CSI error
is assumed to lie in a known set, e.g., a norm-2 ball, where a
larger set represents a higher CSI uncertainty [19]-[23].

The authors in [12] studied the minimization of sum
mean-squared-error (MSE) in a multiple-input multiple-output
(MIMO) FD underlay CR system. By assuming perfect knowl-
edge of the CSI, a second-order cone programming (SOCP)-
based algorithm was proposed. However, the sum-MSE opti-
mization problem under norm-bounded imperfect CSI cannot
be cast as an SOCP problem, and thus the algorithms proposed
in [12] are not applicable under the assumption of imperfect
CSI knowledge, since it is not suitable to solve the min-
max problems arising from worst-case (norm-bounded) CSI
considered in this paper. Hence, it is of paramount importance
to consider the imperfect channel estimates, and develop robust
beamforming schemes in FD underlay CR systems.

Motivated by the above, in this paper, we study an underlay
CR system, where a secondary FD base-station (BS) serves
multiple HD UL and DL SUs at the same time and frequency,
and the secondary network utilizes the spectrum simulta-
neously with multiple PUs. In addition to SI, CCI is also
taken into account to design the optimal robust beamformers
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under a norm-bounded-error model. We study the sum-MSE
minimization problem under the power constraints at the UL
SUs and secondary BS, and SUs’ interference constraints to
the PUs. Since this problem is semi-infinite (optimization
problems with infinitely many constraints) [24, Ch. 3], we
propose two methods to design the transceiver matrices at
the secondary network jointly. In the first method, by repre-
senting the semi-infinite constraints in tractable forms (linear
matrix inequality (LMI)), the problem can be transformed to
a semidefinite programming (SDP), and therefore efficiently
solved by optimizing the transmit and receiving beamforming
matrices iteratively. Due to the prohibitive complexity of the
SDP-based algorithms, in the second algorithm, we propose
a low complexity cutting-set method [25], [26], which solves
the problem by alternating between an optimization step and a
pessimization step. In the first (optimization) step, the transmit
and receive beamforming matrices are designed under a given
finite subset of the uncertainty region, and in the second (pes-
simization) step, the subset is updated through the computation
of the worst-case channels in the uncertainty regions.
A. Related Works

The imperfect CSI in FD cellular systems have been con-
sidered in the beamformer design in [27], [28], [29], where
the channel estimation errors are modeled using a statistical
approach. Norm-bounded CSI model in FD systems was first
adopted in [30], [31]. However, only single-users equipped
with single antennas was considered. Therefore, they cannot
be applied to FD multi-user MIMO wireless communication
systems directly.

In the context of robust CR networks design, a stochastic
model was considered in [18] and the worst-case model was
considered in [19], [21], [22], [23]. For example, in [19], a
robust cognitive beamforming scheme was proposed where the
secondary transmitters were assumed to have the the perfect
CSI information between secondary transmitters and receivers,
whereas the channel between the secondary transmitters and
primary users were assumed to be known imperfectly. More-
over, in [19], the transmitters and receivers were assumed to
be equipped with multiple and single antennas, respectively
leading to a convex optimization problem. In [21], the non-
cooperative game was considered to optimize the CR network
where the resource allocation problem for each game player
was convex. Compared with the optimization problems in [19],
[21], which are convex, the robust beamforming problem we
have is more challenging because it is non-convex. Both our
proposed scheme and the scheme proposed in [22] employ
the S-procedure [32] to transform the constraints into LMIs.
The difference between our proposed scheme and the scheme
proposed in [22] is that in our proposed scheme, the optimiza-
tion problem is transformed to a single SDP while in [22], the
optimization problem is solved using bisection search where
in each iteration an SDP is solved. Moreover, single-antenna
receivers are assumed in [22]. In [23], each semi-infinite con-
straint included only one uncertainty variable, and they mostly
resort to the complex-valued version of the sign-definiteness
lemma published in [32] to resolve the semi-infiniteness of
the constraints. We apply the sign-definiteness lemma to the
case of complex-valued quantities with multiple uncertainties
in each design constraint. Moreover, in [23], identical channel
estimation errors for different secondary and primary links
were assumed. Compared to [23], the proposed scheme in
our paper accounts for different estimation inaccuracies in the
secondary and primary links.

As discussed in [12], MSE-based beamforming problems
have been considered extensively for many communication
systems in literature due to their good performance, signif-
icantly reduced complexity, and relationship with bit error
rate (BER) and signal-to-interference-plus-noise ratio (SINR).
Here, we reveal useful insights into FD CR systems via a
robust MSE-based optimization. Indeed, the studied system
in our paper shares many similarities to the traditional multi-
cell multi-user networks, both in terms of the system concept,
service requirements, as well as the design guidelines. Never-
theless the application of the FD technology in a CR network
introduces fundamental new challenges to the traditional multi-
user MIMO systems, which is the main focus of the present
paper. The main distinctions are summarized as follows:
• The coexistence requirements of a secondary cellular

system, with a network of PUs needs to be revised for
an FD CR system. This is because, in an FD cellular
network, the BS, as well as the UL users share the
same channel resource for transmission, which results
in the imposition of a higher interference intensity on
the primary network. This issue becomes more critical
considering the fact that the acquisition of an accurate
CSI regarding the interference paths from the secondary
UL users to the primary nodes is relatively unrealistic,
and calls for the consideration of joint robust transmis-
sion strategies from the UL secondary users as well as
the secondary BS.

• In an FD multi-user MIMO system, the interference
paths between UL and DL SUs should be additionally
taken into account. This impacts both the system perfor-
mance, as well as the design strategy.

• In an FD multi-user MIMO system, the SI at the
secondary BS is a critical challenge, and strongly relates
the performance/design of the UL reception to the DL
transmission. In this respect, the consideration of an
accurate transceiver model, including the impacts of
transmission and reception distortions are critical, as it
is well-established in the context of FD system design
and analysis.

Note that the aforementioned considerations regarding the
design of a robust FD multi-user MIMO CR network, result
in a relatively complicated problem structure. Moreover, due
to the transmit and receive distortions at the FD nodes in
addition to imperfect CSI, MSE is a complicated function,
which makes the transformation of the constraints in the
optimization problems complicated. This, in turn, calls for a
rigorous optimization and analysis, together with a dedicated
computational complexity study. Simulation results demon-
strate that the proposed FD system can achieve a significant
improvement of throughput over HD system.

B. Notation
Matrices and vectors are denoted as bold capital and low-

ercase letters, respectively. (·)T is the transpose; (·)∗ is the
conjugate, and (·)H is the conjugate transpose. E {·} and tr{·}
denote the statistical expectation and trace, respectively. IN
and 0N×M denote the N by N identity and the N by M zero
matrices, respectively. diag (A) is the diagonal matrix with the
same diagonal elements as A. CN

(
µ, σ2

)
denotes a complex

Gaussian distribution with mean µ and variance σ2. vec(·)
stacks the elements of a matrix to one long column vector.
The operators ⊗ and ⊥ denote Kronecker product and the
statistical independence, respectively. ‖X‖F and ‖x‖2 denote
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Fig. 1: An illustration of a full-duplex multi-user MIMO CR system model. The PUs are being interfered by both the SU BS and UL SUs.

the Frobenius norm of a matrix X and the Euclidean norm of
a vector x, respectively. bAici=1,...,K denotes a tall matrix (or
vector) obtained by stacking the matrices Ai, i = 1, . . . ,K.
<{A} represents the real part of A. A � 0 shows that A is a
positive semidefinite matrix. Finally, Rm×n and Cm×n denote
m× n real and complex matrices, respectively.

II. SYSTEM MODEL

We study an underlay FD CR cellular system, in which a
secondary FD BS equipped with M0 transmit and N0 receive
antennas serves K HD mode UL SUs, each equipped with Mk

transmit antennas and J HD mode DL SUs, each equipped
with Nj receive antennas simultaneously. The secondary net-
work coexists with the primary network, consisting of L PUs
as seen in Fig. 1.

In Fig. 1, HUL
k ∈ CN0×Mk and HDL

j ∈ CNj×M0 denote
the k-th UL and the j-th DL channel, respectively. Moreover,
H0 ∈ CN0×M0 and HDU

jk ∈ CNj×Mk denote the SI channel
at the FD BS and the CCI channel between the k-th UL and
j-th DL users, respectively.

We adopt the transmitter/receiver distortion model in [7],
which accounts for the non-ideal hardware components at
the transmit and receive chains, e.g., power amplifiers, os-
cillators, analog-to-digital converters (ADCs), and digital-to-
analog converters (DACs). The aforementioned model relies
on the experimental measurements in [33] and [34] showing
that a collective effects of hardware imperfections can be
approximated as an additive Gaussian noise, and this model
has been commonly used in related literature, see [8]-[13].
In this respect, we consider an additive white Gaussian term
as “transmitter noise” (“receiver distortion”) at each transmit
(receive) antenna, whose variance is κ (β) times the power of
the undistorted signal at the corresponding chain.

The source symbols at the k-th UL and j-th DL users are
denoted as sULk ∈ CdUL

k ×1 and sDLj ∈ Cd
DL
j ×1, respectively.

It is assumed that the symbols are independent and identically
distributed (i.i.d.) with unit power, i.e., E

[
sULk

(
sULk

)H]
=

IdUL
k

and E
[
sDLj

(
sDLj

)H]
= IdDL

j
. The transmitted signal of

the k-th UL user and that of the BS can be written as

xULk = VUL
k sULk , x0 =

J∑
j=1

VDL
j sDLj , (1)

respectively, where VUL
k ∈ CMk×dUL

k and VDL
j ∈ CM0×dDL

j

represent the precoders for the data streams of the k-th UL
and j-th DL users, respectively. The signal received by the BS

and that received by the j-th DL user can be written as

y0 =

K∑
k=1

HUL
k

(
xULk + cULk

)
+ H0 (x0 + c0)

+ e0 + n0, (2)

yDLj = HDL
j (x0 + c0) +

K∑
k=1

HDU
jk

(
xULk + cULk

)
+ eDLj + nDLj , (3)

respectively, where n0 ∈ CN0 and nDLj ∈ CNj denote the
additive white Gaussian noise (AWGN) vector with zero mean
and covariance matrix R0 = σ2

0IN0
and RDL

j = σ2
j INj

at the
BS and the j-th DL user, respectively.1

Furthermore, cULk (c0) in (2)-(3), is the distortion at the
transmitter at the k-th UL user (BS), which closely approx-
imates the effects of phase noise, non-linearities in the DAC
and additive power-amplifier noise. The covariance matrix of
cULk is given by κ (κ � 1) times the energy of the intended
signal at each transmit antenna [7]. In particular cULk can be
modeled as

cULk ∼ CN
(
0, κ diag

(
VUL
k

(
VUL
k

)H))
, cULk ⊥ xULk . (4)

Finally, in (3)((2)), eDLj (e0) is the receiver distortion at the
j-th DL user (BS), which closely approximates the combined
effects of non-linearities in the ADC, additive gain-control
noise and phase noise. The covariance matrix of eDLj is given
by β (β � 1) times the energy of the undistorted received
signal at each receive antenna [7] and can be modeled as

eDLj ∼ CN
(
0, βdiag

(
ΦDL
j

))
, eDLj ⊥ uDLj , (5)

where ΦDL
j = Cov{uDLj } and uDLj is the undistorted received

vector at the j-th DL user, i.e., uDLj = yDLj −eDLj . Similarly,
the discussion on the transmitter/receiver distortion model
holds for c0 and e0, as well.

To obtain the source symbols of the k-th UL and the j-
th DL users, the received signals are multiplied by linear
matrices, employing single-stream decoding2. In this regard,

1Since the secondary BS and DL SUs are unable to distinguish the
interference from the primary network from the thermal noise, the noise terms
in (2) and (3) include both the thermal noise and the interference from the
PUs. This assumption is also adopted in [19], [21], [35]-[37] and the noise is
modeled as zero mean with unit variance in [19], [38].

2In this paper we consider a system with linear and single-stream decoding.
Other decoding possibilities, e.g., successive interference reduction schemes
based on single user decoding, can be also considered at the expense of higher
complexity, see, e.g., [39], [40].
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linear decoders are denoted as UUL
k ∈ CN0×dUL

k , and UDL
j

∈ CNj×dDL
j at the BS and at the j-th DL user, respectively.

Consequently, the estimates of data streams are given as

ŝULk =
(
UUL
k

)H
y0, ŝDLj =

(
UDL
j

)H
yDLj . (6)

Using these estimates, the MSEs of the k-th UL and j-th DL
users can be written as in (7) and (8) given at the bottom of
the current page, respectively. In (7) and (8), ΣUL

k and ΣDL
j

are the approximated aggregate interference-plus-noise terms
at the k-th UL and j-th DL user, respectively, and are expressed
as in (9)-(10) given at the bottom of the following page3 4.
Since the secondary and primary networks coexist under the
same spectrum, secondary network infers interference on the
primary network. The interference power from the UL SUs and
BS projected to the l-th PU equipped with Tl receive antennas
is written as

IPUl =

K∑
k=1

tr
{

Glk

(
VUL
k

(
VUL
k

)H
+κdiag

(
VUL
k

(
VUL
k

)H))
GH
lk

}
+
J∑
j=1

tr
{

Gl

(
VDL
j

(
VDL
j

)H
+κdiag

(
VDL
j

(
VDL
j

)H))
GH
l

}
, (11)

where Glk ∈ CTl×Mk
(
Gl ∈ CTl×M0

)
is the channel between

the l-th PU and k-th UL user (l-th PU and the BS).

3Note that ΣUL
k and ΣDL

j are approximated under κ � 1 and β � 1,
and thus the terms including κβ, i.e., the multiplication of κ and β have been
ignored. This is a practical assumption [4], [7]. Note that although the terms
κ and β are much smaller than 1, when they are applied on a strong channel
alone, i.e., SI channel, they are no longer negligible [7].

4In practice, since the BS knows the codeword x0 (its own transmitted
signal), and the SI channel H0, the term H0x0 can be canceled out in (2).
In the following sections, we will keep this term merely to be able to use the
simplification in the next subsection. However, in the performance simulations,
this term will not be considered.

A. Joint Beamforming Design
In this paper, we tackle the sum-MSE minimization problem,

which is formulated as

min
V,U

K∑
k=1

tr
{

MSEUL
k

}
+

J∑
j=1

tr
{

MSEDL
j

}
(12a)

s.t. tr
{

VUL
k

(
VUL
k

)H} ≤ Pk, k = 1, . . . ,K, (12b)
J∑
j=1

tr
{

VDL
j

(
VDL
j

)H} ≤ P0, (12c)

IPUl ≤ λl, l = 1, . . . , L, (12d)
where Pk in (12b) is the transmit power constraint at the
k-th UL user, P0 in (12c) is the total power constraint
at the BS, and λl in (12d) is the upper limit of the in-
terference allowed to be imposed on the l-th PU. Here
V =

{
VUL
k , k = 1, . . . ,K, VDL

j , j = 1, . . . , J
}

and U ={
UUL
k , k = 1, . . . ,K, UDL

j , j = 1, . . . , J
}

are the set of all
transmit and receive beamforming matrices, respectively.

1) Simplification of Notations: To simplify the notations,
we combine UL and DL channels, similar to [15]. Let us
denote SUL and SDL to represent the set of K UL and J
DL channels, respectively. Denoting Hij , ni, Glj and receive
(transmit) antenna numbers Ñi(M̃i) as

Hij =


HUL
j , i ∈ SUL, j ∈ SUL,

H0, i ∈ SUL, j ∈ SDL,
HDU
ij , i ∈ SDL, j ∈ SUL,

HDL
i , i ∈ SDL, j ∈ SDL,

ni =

{
n0, i ∈ SUL,
nDLi , i ∈ SDL,

Glj =

{
Glj , j ∈ SUL,
Gl, j ∈ SDL, Ñi

(
M̃i

)
=

{
N0 (Mi) , i ∈ SUL,
Ni (M0) , i ∈ SDL,

and referring to VX
i , UX

i , dXi and ΣX
i , X ∈ {UL,DL} as

Vi, Ui, di and Σi, respectively, the MSE of the i-th link,
i ∈ S , SUL ∪ SDL can be written as
MSEi

=
(
UH
i HiiVi − Idi

) (
UH
i HiiVi − Idi

)H
+ UH

i ΣiUi,(13)

MSEUL
k =

((
UUL
k

)H
HUL
k VUL

k − IdUL
k

)((
UUL
k

)H
HUL
k VUL

k − IdUL
k

)H
+
(
UUL
k

)H
ΣUL
k UUL

k , (7)

MSEDL
j =

((
UDL
j

)H
HDL
j VDL

j − IdDL
j

)((
UDL
j

)H
HDL
j VDL

j − IdDL
j

)H
+
(
UDL
j

)H
ΣDL
j UDL

j . (8)

ΣUL
k ≈

K∑
j 6=k

HUL
j VUL

j

(
VUL
j

)H (
HUL
j

)H
+ κ

K∑
j=1

HUL
j diag

(
VUL
j

(
VUL
j

)H) (
HUL
j

)H
+

J∑
j=1

H0

(
VDL
j

(
VDL
j

)H
+ κdiag

(
VDL
j

(
VDL
j

)H))
HH

0 + σ2
0IN0

+ β

J∑
j=1

diag
(
H0V

DL
j

(
VDL
j

)H
HH

0

)
+ β

K∑
j=1

diag
(
HUL
j VUL

j

(
VUL
j

)H (
HUL
j

)H)
, (9)

ΣDL
j ≈

J∑
i 6=j

HDL
j VDL

i

(
VDL
i

)H (
HDL
j

)H
+ κ

J∑
i=1

HDL
j diag

(
VDL
i

(
VDL
i

)H) (
HDL
j

)H
+

K∑
k=1

HDU
jk

(
VUL
k

(
VUL
k

)H
+ κdiag

(
VUL
k

(
VUL
k

)H)) (
HDU
jk

)H
+ σ2

j INj

+ β

K∑
k=1

diag
(
HDU
jk VUL

k

(
VUL
k

)H (
HDU
jk

)H)
+ β

J∑
i=1

diag
(
HDL
j VDL

i

(
VDL
i

)H (
HDL
j

)H)
. (10)
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where
Σi =

∑
j∈S,j 6=i

HijVjV
H
j HH

ij + κ
∑
j∈S

Hijdiag
(
VjV

H
j

)
HH
ij

+ β
∑
j∈S

diag
(
HijVjV

H
j HH

ij

)
+ σ2

i IÑi
, (14)

and the interference power at the l-th PU, IPUl in (11) can be
rewritten as

IPUl =
∑
j∈S

tr
{
Glj

(
VjV

H
j + κdiag

(
VjV

H
j

))
GH
lj

}
.(15)

With the simplified notations, the non-convex optimization
problem (12) can be equivalently expressed as

min
V,U

∑
i∈S

tr {MSEi} (16a)

s.t. tr
{
ViV

H
i

}
≤ Pi, i ∈ SUL, (16b)∑

i∈SDL

tr
{
ViV

H
i

}
≤ P0, (16c)

IPUl ≤ λl, l = 1, . . . , L, (16d)
where (16d) represents the per PU received interference power
constraint. Note that underlay CR systems enable SUs to
transmit with overlapping spectrum with PUs as long as
the QoS of PUs is not degraded. This is managed by, e.g.,
introducing some interference constraints that impose upper
bounds on the total aggregate interference induced by all SUs
to each PU. The choice of this upper bound (or threshold) is a
complex and open regulatory issue, which can be the result
of a negotiation or opportunistic-based procedure between
PUs (or regulatory agencies) and SUs [35]. Both deterministic
and probabilistic interference constraints have been suggested
in the literature [16], [17]. In this paper, we will consider
deterministic interference constraints as assumed in [35], [36],
[37]. Particularly, we assume that the PU imposing the interfer-
ence constraint, has already computed its maximum tolerable
interference threshold.
B. Imperfect CSI Model

In practice, perfect CSI of the PUs may not be available
at the BS, because of the loose cooperation between PUs and
SUs. Therefore, in this paper, we assume that the secondary
BS has an imperfect knowledge of the secondary and primary
networks. The channel uncertainties are modeled by the worst-
case (norm-bounded error) model [19]-[20]:

Hij ∈ Hij =
{

H̃ij + ∆i : ‖∆i‖F ≤ δi, j ∈ S
}
,(17)

Glj ∈ Glj =
{

G̃lj + Λl : ‖Λl‖F ≤ θl, j ∈ S
}
, (18)

where H̃ij and G̃lj denote the nominal value of the CSI, ∆i

and Λl denote the channel error matrix, and δi and θl denote
the uncertainty bounds.

Under channel uncertainties, the problem (16) can be ex-
pressed as

min
V,U

max
∀Hij∈Hij

∑
i∈S

tr {MSEi} (19a)

s.t. tr
{
ViV

H
i

}
≤ Pi, i ∈ SUL, (19b)∑

i∈SDL

tr
{
ViV

H
i

}
≤ P0, (19c)

IPUl ≤ λl, ∀Glj ∈ Glj , l = 1, . . . , L.(19d)
Due to the constraint (19d), the problem (19) is a semi-

infinite program [24, Ch. 3], and we will derive an equivalent

TABLE I: Sum-MSE Minimization using SDP Algorithm

1) Set the iteration number n = 0 and initialize V[n].
2) n← n+ 1. Update U

[n]
i , i ∈ S by solving the convex SDP problem (21)

under fixed V[n−1].
3) Update V

[n]
i , i ∈ S by solving the convex SDP (21) under fixed U[n].

4) Repeat steps 2 and 3 until convergence.

constraint in LMI form in Section III, so that the problem (19)
will turn into an equivalent SDP, which can be efficiently
solved by standard interior point methods. Then, in an attempt
to further reduce the complexity of the SDP algorithm, in
Section IV, we will develop a cutting-set based algorithm to
solve the non-convex problem (19).

III. SDP METHOD

Since the problem (19) is an intractable semi-infinite op-
timization problem [41], in the following, we will turn it
into a tractable form. Using epigraph form [42, Sec. 4.1.3]
and introducing slack variables τi, the min-max problem (19)
can be equivalently rewritten as the following minimization
problem:

min
V,U,τ

∑
i∈S

τi (20a)

s.t. tr {MSEi} ≤ τi, ∀Hij ∈ Hij , i ∈ S, (20b)
tr
{
ViV

H
i

}
≤ Pi, i ∈ SUL, (20c)∑

i∈SDL

tr
{
ViV

H
i

}
≤ P0, (20d)

IPUl ≤ λl, ∀Glj ∈ Glj , l = 1, . . . , L, (20e)
where τ is a stacked vector composed of τi, i ∈ S.

The problem (20) can be formulated as a standard SDP,
which is defined as minimizing a linear objective under LMI
constraints. LMI is a matrix constraint in the form of A (x) �
0, where the matrix A depends linearly on x. Thanks to this
formulation, many well known algorithms for solving SDPs,
e.g., interior point methods [42] can be exploited to solve the
optimization problem efficiently in polynomial time. The SDP
formulation, equivalent to the problem (20) is expressed as
below, the lengthy proof of which is relegated to Appendix A5.

min
V,U,τ ,εi≥0,ηl≥0

∑
i∈S

τi (21a)

s.t.

 τi − εi µ̃Hi 01×ÑiM̃
µ̃i IAi

−δiD∆i

0ÑiM̃×1 −δiDH
∆i

εiIÑiM̃

 � 0, i ∈ S, (21b)

‖vec (Vi)‖22 ≤ Pi, i ∈ SUL, (21c)
‖bvec (Vi)ci∈SDL‖22 ≤ P0, (21d) λl − ηl ι̃Hl 01×TlM̃

ι̃l IBl
−θlEΛl

0TlM̃×1 −θlEH
Λl

ηlITlM̃

�0, l=1, . . . , L.(21e)

The variables Ai, Bl, µ̃i, D∆i , ι̃l and EΛl
are defined as:

Ai = di

∑
j∈S

(
dj + M̃j

)
+ Ñi

+ Ñi
∑
j∈S

dj , (22)

5To simplify the presentation, from now on we will assume the number of
transmit antennas at the BS is equal to number of transmit antennas at the UL
users, i.e., M̃ =M0 =Mi, i ∈ SUL.
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Bl = Tl
∑
j∈S

(
dj + M̃j

)
, (23)

µ̃i=



(
VT
i ⊗UH

i

)
vec

(
H̃ii

)
− vec (Idi)⌊(

VT
j ⊗UH

i

)
vec

(
H̃ij

)⌋
j∈S,j 6=i⌊⌊√

κ
(
(Γ`Vj)

T ⊗UH
i

)
vec

(
H̃ij

)⌋
`∈D(T )

j

⌋
j∈S⌊⌊√

β
(
VT
j ⊗ (UH

i Γ`)
)
vec

(
H̃ij

)⌋
`∈D(R)

i

⌋
j∈S

σivec (Ui)


,(24)

D∆i
=



(
VT
i ⊗UH

i

)⌊(
VT
j ⊗UH

i

)⌋
j∈S,j 6=i⌊⌊√

κ
(
(Γ`Vj)

T ⊗UH
i

)⌋
`∈D(T )

j

⌋
j∈S⌊⌊√

β
(
VT
j ⊗ (UH

i Γ`)
)⌋
`∈D(R)

i

⌋
j∈S

0diÑi×ÑiM̃


, (25)

ι̃l =


⌊(

VT
j ⊗ ITl

)
vec

(
G̃lj

)⌋
j∈S

√
κ

⌊⌊(
(Γ`Vj)

T ⊗ ITl

)
vec

(
G̃lj

)⌋
`∈D(T )

j

⌋
j∈S

,(26)

EΛl
=

 ⌊(
VT
j ⊗ ITl

)⌋
j∈S√

κ
⌊⌊(

(Γ`Vj)
T ⊗ ITl

)⌋
`∈D(T )

j

⌋
j∈S

 . (27)

As it can be observed from (21b), the problem (21) does
not hold a jointly convex structure over the optimization
variables. Nevertheless, it is a separately convex optimization
problem over the transmit beamforming matrices V, and the
receiving beamforming matrices U, once the other variables
are fixed. This facilitates an alternating optimization algorithm
where in each iteration the solution to (21) is calculated, as a
convex optimization problem, assuming an alternatively fixed
V or U. The described optimization iterations continue until
convergence or a maximum number of iterations is reached.
Please see Table I for a detailed algorithm description.

The proposed SDP method decreases the sum MSE mono-
tonically at each iteration of the alternating algorithm. And
since MSE is bounded below by zero, it is quite obvious
that the proposed sum-MSE minimization algorithm con-
verges [43], [44]. However, the resulting converging point does
not necessarily satisfy the first order optimality conditions and
since the sum-MSE minimization problem is not jointly convex
over transmit and receive filters, the proposed algorithm does
not necessarily converge to an optimum point of the original
problem. As a result, it is important to select good initialization
points to achieve a suboptimal solution with a good perfor-
mance. Due to the problem complexity, the utilization of such
methods with similar convergence result is very common [45].
The performance of the proposed SDP-based algorithm is
analyzed via numerical simulations in Section VI.

A. Computational Complexity
In this subsection, we discuss the computational complexity

of the proposed SDP algorithm in Table I. The number of
arithmetic operations required to solve a standard real-valued
SDP problem

min
x∈Rn

cTx (28a)

s.t. A0 +
∑n

i=1
xiAi � 0, (28b)

TABLE II: Complexity of SDP method

Number of variables (n) Dimension of blocks (ai)
V

∑
i∈S 2M̃di + 2|S|+ L ai = Ai + ÑiM̃ + 1, i ∈ S

ai = M̃dUL
i + 1, i ∈ SUL

ai = M̃
∑

i∈SDL d
DL
i + 1

al = Bl + TlM̃ + 1, l, . . . , L

Ui 2Ñidi + 2 ai = Ai + ÑiM̃ + 1, i ∈ S

‖x‖2 ≤ R, (28c)
where Ai denotes the symmetric block-diagonal matrices with
P diagonal blocks of size al × al, l = 1, . . . , P , is upper-
bounded by [41]

O (1)

(
1 +

P∑
l=1

al

)1/2

n

(
n2 + n

P∑
l=1

a2
l +

P∑
l=1

a3
l

)
. (29)

Since the proposed algorithm in Table I solves a SDP prob-
lem in Step 2 and Step 3, the number of arithmetic operations
required to compute optimal Vi and Ui is calculated from (29)
as follows. In computing Vi, the number of diagonal blocks P
is equal to |S|+

∣∣SUL∣∣+L+1. For the MSE constraint of each
user, the dimension of blocks are ai = Ai+ ÑiM̃ +1, i ∈ S.
For the UL SU power constraint, the dimension of the blocks
are ai = M̃dULi +1, i ∈ SUL. For the BS power constraint, the
dimension of the block is ai = M̃

∑
i∈SDL dDLi + 1, and for

the PU interference constraint, the dimension of the blocks are
al = Bl + TlM̃ + 1, l, . . . , L. The size of unknown variables
is n =

∑
i∈S 2M̃di + 2|S| + L, where the first term is due

to the real and image parts of Vi and the other terms are
due to the additional slack variables. The calculation of the
number of arithmetic operations required for Ui can be carried
out similarly. The computational complexity to solve the sum-
MSE minimization problem using SDP method are given in
Table II. It is easy to see that as the number of users and
transmit/receive antennas increase, the complexity of the SDP
algorithm is very high.

B. CSI Acquisition

We assume that the secondary BS has the knowledge of
the nominal channels and the radius of uncertainty regions.
We undertake a centralized approach where the secondary
BS collects all channel matrices, computes the beamforming
matrices based on the imperfect CSI, and then distributes
them to the SUs. The estimation of CSI matrices in the
secondary network follows a similar strategy to that of tra-
ditional systems, as the secondary nodes cooperate with the
secondary BS. This is performed via the exchange of the
training sequences and feedback, and the application of usual
CSI estimation methods [46]. On the other hand, it is more
challenging to obtain an accurate estimate for the CSI be-
tween the secondary and primary networks, as the primary
network is usually not willing to cooperate with the secondary
network. In this regard, few methods have been suggested
to combat this problem. Firstly, in case the primary system
adopts the TDD scheme, the secondary network can obtain
the CSI to the primary nodes by taking advantage of the
channel reciprocity, and overhearing the transmissions from
the primary network [46]-[50]. Secondly, a partial CSI can be
obtained via blind environmental learning [51], [52]. Third,
an estimate of CSI can be obtained via the realization of a
band manager with the ability to exchange the CSI between
the secondary and primary networks [47], [48], [53], and
finally, if possible, the primary and secondary networks can



7

cooperate for the exchange of channel estimates [46]. Since
we have loose cooperation between primary and secondary
networks, the channel estimates will not be perfect in practice.
Therefore, we model the imperfect channel estimates with a
norm-bounded channel uncertainty model. Note that in SDP-
based algorithm, the transmit and receive filters are designed
at a central scheduler design with the help of CSI feedbacks
at the secondary network [49].

IV. ROBUST TRANSCEIVER DESIGN BASED ON
CUTTING-SET METHOD

Since the SDP algorithm has a high computational complex-
ity, in this section, we propose an efficient with a low com-
plexity algorithm, the cutting-set method [25], which tackles
the channel uncertainties by separating worst-case optimization
from the robust transceiver design problem. In particular, the
optimization problem is solved through alternating between
two steps, i.e., transceiver design and worst-case channel
determination steps. In the first step (transceiver design), the
optimal beamforming matrices are computed under the as-
sumption that the errors belong to a certain known uncertainty
region (fixed set of CSI), whereas the second step (worst-case
channel determination) computes the worst-case channel error
matrices in the uncertainty region that maximize the constraints
under the assumption that transceiver beamforming matrices
computed in the first step are fixed. In the following, we give
both steps of the cutting-set algorithm in detail to solve the
robust MSE-based optimization problem.
A. Transceiver design under fixed channels

In this step, a version of the semi-infinite problem is solved
over finite subsets of the uncertainty regions. Assuming that
the worst-case channels are given (fixed CSI), the optimal Vi

and Ui are computed through solving the following problem:

min
V,U,τ

∑
i∈S

τi (30a)

s.t. ‖µi‖
2
2 ≤ τi, i ∈ S, (30b)

‖vec (Vi)‖22 ≤ Pi, i ∈ SUL, (30c)
‖bvec (Vi)ci∈SDL‖22 ≤ P0, (30d)

‖ιl‖22 ≤ λl, l = 1, . . . , L, (30e)
where µi and ιl are defined in (54) and (55), respectively.
Note that this problem is similar to the optimization prob-
lem (56) (without CSI errors) given in Appendix A, and with
straightforward manipulations, it is easy to show that the SDP
formulation without CSI errors would reduce to the SOCP
formulation. Hence, we can reformulate the problem (30) as a
SOCP problem under fixed V or fixed U [12].
B. Worst-case Channel Determination for Given Transceivers

In the second step, worst-case analysis is carried out where
channels that violate the constraints are determined and ap-
pended to the finite uncertainty subsets. For fixed transceiver
beamforming matrices computed in the first step, the worst-
case channels, which maximize the MSE and PU interference
constraints given in (30b) and (30e), respectively, are computed
in the bounded uncertainty regions. Note that under fixed
transceiver beamforming matrices, the MSE and PU interfer-
ence constraints are independent of each other with respect to
the CSI errors. Under a fixed transceiver design, the worst-case
channels that maximize the MSE of the i-th user is computed
through solving the following problem

max
∆i

tr {MSEi} (31a)

s.t. ‖∆i‖F ≤ δi, (31b)
where ∆i is the channel estimation error defined in (17).

Since the function (31a) is non-convex, the problem is
intractable, and thus to simplify the computation, we adopt
a first order approximation by neglecting all the second and
higher terms of CSI errors in (13), similar to [54], [55]. The
approximation is expressed as

tr {MSEi}
(a)
≈ tr

{
˜MSEi

}
+ 2<

{
vecH

(
BH
i

)
vec (∆i)

}
,(32)

where tr
{

˜MSEi

}
is obtained by setting all CSI errors in (13)

to zero, (a) is obtained by using the identity tr {AB} =
vecH

(
AH

)
vec (B), and Bi is expressed as

Bi = Vi

(
UH
i H̃iiVi − Idi

)H
UH
i +

∑
j∈S,j 6=i

VjV
H
j H̃H

ijUiU
H
i

+ κ
∑
j∈S

diag
(
VjV

H
j

)
H̃H
ijUiU

H
i

+ β
∑
j∈S

VjV
H
j H̃H

ijdiag
(
UiU

H
i

)
. (33)

Using Cauchy-Schwarz inequality in the approximate MSE
expression in (32), the worst-case CSI errors corresponding
to the MSE constraints are computed as

∆i =
δi

‖vec (Bi)‖2
BH
i . (34)

After computing the worst-case CSI errors, their correspond-
ing worst-case channels are written as Hij = H̃ij+∆i, j ∈ S.
Note that since the worst-case CSI error in (34) is computed
through an approximation in (32), it is possible for the MSE
constraints in (30b) to be violated even if the corresponding
worst-case channels are in the given uncertainty regions. How-
ever, when the CSI error is small, this violation is negligible,
since the contribution of the second and higher order terms of
CSI errors on the performance is also negligible [54], [55].

Next, we compute the worst-case CSI errors correspond-
ing to the PU interference (20e). In particular, under fixed
transceiver design, the worst-case channels that maximize the
interference power at the l-th PU is computed by solving the
following problem

max
Λl

IPUl (35a)

s.t. ‖Λl‖F ≤ θl, (35b)
which is, again, difficult to solve. Here, Λl is the channel esti-
mation error defined in (18). Similar to (32), an approximation
for (15) involving only the first-order errors is adopted, and the
approximation is expressed as

IPUl ≈ ĨPUl + 2<
{
vecH

(
CH
l

)
vec (Λl)

}
, (36)

where ĨPUl is obtained by setting all CSI errors in (15) to zero,
and Cl is defined as

Cl =
∑
j∈S

(
VjV

H
j + κdiag

(
VjV

H
j

))
G̃H
lj . (37)

Using Cauchy-Schwarz inequality in the approximate expres-
sion (36), the worst-case errors corresponding to the l-th PU
interference are obtained as

Λl =
θl

‖vec (Cl)‖2
CH
l . (38)

The corresponding worst-case channels can be expressed as
Glj = G̃lj + Λl, j ∈ S.
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C. Iterative Algorithm for the Robust Design
The proposed cutting-set algorithm to solve the robust MSE-

based problem involves a two-step algorithm alternating over
transceiver optimization and worst-case analysis steps, where
at each step a convex optimization problem is solved as
described in the previous two subsections. The algorithm starts
with the set of channel matrices H, which initially contains
only the imperfect CSI H̃ij , {i, j} ∈ S and G̃lj , j ∈ S, l =
1, . . . , L. In the first step, the problem (30) is solved under
all the channels in H (the constraints involve all the channel
elements in the set H).

The second step involves computing the worst-case channels
through the problems (31) and (35) under the transceivers
obtained in the previous step. After the worst-case analysis,
if the corresponding channels for all links, i.e., H̃ij + ∆i

and G̃lj + Λl violate the constraints in (30b) and/or (30e)
under the transceivers obtained in the first step, these worst-
channels are appended to the set H. The alternating two-
step algorithm runs until no violating channel is produced,
i.e., the maximum constraint violation is below a specified
threshold [54], [55], [56], [57]. Note that during the worst-
case channel determination step, the set H may be expanded
(or remain the same) depending on the constraint violations.
During the minimization step (first step), the precoder and
receive beamforming matrices are computed to meet MSE and
PU interference constraints for increasing number of worst-
case channels in H (MSE and PU interference constraints
must include all the channels in H) resulting in increased
robustness. Particularly, as the size of the set H increases,
the number of effective constraints in the transceiver design
problem increases.

As shown in [25], the two-step alternating algorithm con-
verges to an optimal solution of the original problem when
the optimization and worst-case analysis steps are solved to
global optimality in each iteration. However, the optimization
step here involves solving the non-convex problem in (30) and
furthermore due to the MSE and interference approximations
in (32) and (36), respectively used to convexify the optimiza-
tion problem in the worst-case analysis, the proposed iterative
algorithm is not guaranteed to lead to the robust optimal
solution, and generally converges to a suboptimal solution.
Since the optimization problem is intractable, the convergence
of the proposed cutting-set algorithm is not shown analytically
but only demonstrated empirically, similar to the prior related
works [54], [55], [56], [57] . However, our simulations show
that the proposed design is robust to the CSI errors, i.e., it can
still provide a significant gain over the non-robust method in
the presence of CSI errors. Moreover, using warm-start [25]
techniques in the outer iterations, i.e., use the previously
computed precoder and receive filter to initialize the solution
of the current outer iteration reduces the overall effort for
our proposed scheme to converge. The steps of the proposed
cutting-set method is shown in Table III.

D. Computational Complexity
The main computation complexity of the cutting-set algo-

rithm stems from the SOCP problem (30), since the compu-
tation complexity of the worst-case analysis can be neglected.
A real-valued SOCP problem can be expressed as

min
x∈Rn

cTx (39a)

s.t. ‖Aix + bi‖ ≤ cTi x + di, i = 1, . . . , P, (39b)

TABLE III: Sum-MSE Minimization using Cutting-Set Method

1) Set the iteration number n = 0 and initialize H[n].
2) Update U

[n]
i and V

[n]
i by solving the problem (30) with the given set H[n]

utilizing a similar iterative algorithm given in Table I.
3) Compute the worst-case channels, denoted as H̃[n] using (34) and (38).
4) Find the violating channels and append them to the set,

i.e., H[n+1] =
{
H̃[n],H[n]

}
.

5) If the termination criterion is satisfied, then end.
Otherwise, set n← n+ 1 and go to Step 2.

TABLE IV: Complexity of cutting-set method

Number of variables (n) Dimension of blocks (ai)
V

∑
i∈S 2M̃di + |S| ai = Ai − Ñidi, i ∈ S

ai = M̃dUL
i , i ∈ SUL

ai = M̃
∑

i∈SDL d
DL
i

al = Bl, l, . . . , L

Ui 2Ñidi + 1 ai = Ai, i ∈ S

‖x‖2 ≤ R, (39c)
where bi ∈ Rai . As discussed in [41], the upper bound on the
number of arithmetic operations to solve this problem is:

O (1) (1 + P )
1/2

n

(
n2 + P +

P∑
i=0

a2
i

)
. (40)

In our problem, the number of inequalities P + 1 equals to
|S| +

∣∣SUL∣∣ + L + 1. For the MSE constraint of each user,
the dimension of blocks are ai = Ai − Ñidi, i ∈ S . For
the UL SU power constraint, the dimension of the blocks are
ai = M̃dULi , i ∈ SUL. For the BS power constraint, the
dimension of the block is ai = M̃

∑
i∈SDL dDLi , and for the

PU interference constraint, the dimension of the blocks are
al = Bl, l, . . . , L. The size of the unknown variables are
n =

∑
i∈S 2M̃di + |S|. By carrying out a similar analysis,

the complexity of other subproblems can be computed. The
computational complexity for the sum-MSE problem based on
cutting-set method is shown in Table IV. Note that compared
to the complexity of the SDP method in Table II, the cutting-
set method has a lower computational complexity, which will
be further compared in the simulations.

V. EXTENSIONS

A. Different Utility Functions

In this subsection, it is shown that with minor modifications,
the proposed algorithms can also be applied to solve the other
robust optimization problems. One problem can be sum-power
minimization subject to MSE and interference constraints,
which can be formulated as:

min
V,U

∑
i∈S

tr
{
ViV

H
i

}
(41a)

s.t. tr {MSEi} ≤ ςi, i ∈ S, ∀Hij ∈ Hij , (41b)
IPUl ≤ λl, ∀Glj ∈ Glj , l = 1, . . . , L, (41c)

where ςi, i ∈ S is the MSE constraint of the i-th user. Using
epigraph form and introducing slack variables τi, the problem
can be written as

min
V,U,τ

∑
i∈S

τi (42a)

s.t. tr
{
ViV

H
i

}
≤ τi, i ∈ S, (42b)

tr {MSEi} ≤ ςi, i ∈ S, ∀Hij ∈ Hij , (42c)
IPUl ≤ λl, ∀Glj ∈ Glj , l = 1, . . . , L. (42d)



9

Another optimization problem can be the minimization of
maximum per-user MSE subject to power constraints at the
secondary network, and interference constraints from the sec-
ondary to primary network. Unlike the sum-MSE minimization
problem, the min-max per-user MSE problem makes sure that
each user has the same MSE, an thus the problem brings
fairness among the nodes. The min-max MSE problem is
written as:

min
V,U

max
∀Hij∈Hij ,i∈S

tr {MSEi} (43a)

s.t. tr
{
ViV

H
i

}
≤ Pi, i ∈ SUL, (43b)∑

i∈SDL

tr
{
ViV

H
i

}
≤ P0, (43c)

IPUl ≤ λl, ∀Glj ∈ Glj , ∀l, (43d)
which is equivalent to the following problem

min
V,U,τ

τ (44a)

s.t. tr {MSEi} ≤ τ, ∀Hij ∈ Hij , i ∈ S, (44b)
tr
{
ViV

H
i

}
≤ Pi, i ∈ SUL, (44c)∑

i∈SDL

tr
{
ViV

H
i

}
≤ P0, (44d)

IPUl ≤ λl, ∀Glj ∈ Glj , l = 1, . . . , L. (44e)

Since the problems (42) and (44) have similar structures
with (20), both problems (42) and (44) can be solved using
both SDP and cutting-set methods proposed in Section III and
Section IV, respectively.

B. Multiple Uncertainties

So far, we have assumed that each semi-infinite constraint
(MSE and interference constraints) includes only one uncer-
tainty variable. Here, we will generalize this to the case of
complex-valued quantities with multiple uncertainties in each
design constraint. To that end, the channel is modeled as

Hij ∈ Hij =
{

H̃ij + ∆ij : ‖∆ij‖F ≤ δij
}
, (45)

Glj ∈ Glj =
{

G̃lj + Λlj : ‖Λlj‖F ≤ θlj
}
, (46)

where H̃ij , G̃lj are defined in (17)-(18), and δij , λlj denote
the nominal value of uncertainty bounds. Please note that com-
pared to the model in (17)-(18), which has only one uncertainty
variable, the model in (45)-(46) has multiple uncertainties.

To handle the multiple uncertainties, we first rewrite the
MSE term in (13) as

µi =




(
VT
j ⊗UH

i

)
vec (Hij)⌊√

κ
(
(Γ`Vj)

T ⊗UH
i

)
vec (Hij)

⌋
`∈D(T )

j⌊√
β
(
VT
j ⊗ (UH

i Γ`)
)
vec (Hij)

⌋
`∈D(R)

i


j∈S

σivec (Ui)


−

 0(
∑

j<i(Ñj+M̃j+1)didj)×1

vec (Idi)
0(di(Ñi−dj)+

∑
j≥i(Ñj+M̃j+1)didj)×1

 (47)

= µ̃i +
∑
j∈S

Mij vec (∆ij) , (48)

where µ̃i is the same as the first term in (47), and the only
difference is that the actual channel matrices Hij , ∀{i, j} is
replaced with the nominal channel matrices H̃ij , and Mij is

defined as

Mij =



0(
∑

j<i(Ñj+M̃j+1)didj)×ÑiM̃j(
VT
j ⊗UH

i

)⌊√
κ
(
(Γ`Vj)

T ⊗UH
i

)⌋
`∈D(T )

j⌊√
β
(
VT
j ⊗ (UH

i Γ`)
)⌋
`∈D(R)

i

0(Ñidi+
∑

j>i(Ñj+M̃j+1)didj)×ÑiM̃j

 . (49)

Using the extended sign-definiteness lemma [44], the MSE
constraint ‖µi‖

2
2 ≤ τi in (56b) can be expressed as

Ai −
∑
j∈S εijQ

H
ijQij −δi1PH

i1 . . . −δi|S|PH
i|S|

δi1Pi1 εi1IÑiM̃
. . . 0ÑiM̃×ÑiM̃

...
...

. . .
...

−δi|S|Pi|S| 0ÑiM̃×ÑiM̃
. . . εi|S|IÑiM̃


� 0, i ∈ S, (50)

εij ≥ 0, ∀{i, j}, (51)
where

Ai =

[
τi µ̃Hi
µ̃i IAi

]
, Qij = [−1, 01×Ai ] ,

Pij =
[
0ÑiM̃×1, MH

ij

]
,

and εij , ∀{i, j} are non-negative real numbers. The same steps
can be independently carried out for the interference power
constraint ‖ιl‖22 ≤ λl in (56e). With the LMI forms in hand,
the proposed SDP can be applied for the case with the multiple
uncertainties.

VI. SIMULATION RESULTS

In this section, we numerically investigate the sum-MSE
minimization problem for an FD MIMO CR cellular system.
We start by comparing the sum MSE performance of the two
algorithms, proposed in the paper as a function of transmit-
ter/receiver distortion, κ/β and channel uncertainty size, δ/θ.
We then analyze the sum-rate performance of the FD system
as a function of the number of antennas Ñ , transmitter/receiver
distortion, κ/β, channel uncertainty size, δ/θ and CCI atten-
uation factor6, ν. The tolerance (the difference between MSE
of two iterations) of the proposed iterative algorithm is set to
10−4, the maximum number of iterations is set to 50, and the
results are averaged over 100 independent channel realizations.
Since the optimization problems we are dealing with are non-
convex, we need to choose good initialization points to have a
suboptimal solution with a good performance. In this paper,
we use right singular matrices initialization [58], and have
used multiple initializations to improve the performance. For
each simulation point, a certain number of initializations were
tried and the best result was chosen. We have observed in
our simulations that the difference caused by the number of
initializations is not very large after 20 initializations. Thus, in
the sequel, we have used 20 initializations.

We consider small cell deployments [59] and compare the
FD system with the HD system under the 3rd Generation

6It is important to note that while the channel matrices are assumed to
be given for each user, it is essential for a practical system to exploit a
smart channel assignment algorithm prior to precoder/decoder design. This is
particularly essential for an FD setup as the CCI can be reduced by assigning
the users with weaker interference paths into the same channel. In order to
incorporate the effect of channel assignment into our simulation, we assume
an attenuation coefficient, namely ν, on the CCI channels, which represent
the degree of isolation among UL and DL users due to channel assignment.
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TABLE V: Simulation Parameters

Parameter Settings
Cell Radius 40m
Carrier Frequency 2GHz
Bandwidth 10MHz
Thermal Noise Density −174dBm/Hz
Noise Figure BS: 13dB, User: 9dB
Path Loss (dB) between BS and users 103.8 + 20.9 log10 d
(d in km)
Path Loss (dB) between users (d in km) 145.4 + 37.5 log10 d
Shadowing Standard Deviation LOS: 3dB, NLOS: 4dB
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Fig. 2: Convergence behavior of the proposed algorithms.

Partnership Project (3GPP) Long-Term Evolution (LTE) speci-
fications. Small cell is considered to be suitable for deployment
of FD technology due to its low transmit power, short trans-
mission distances and low mobility [14], [60]. We consider a
single hexagonal cell with cell radius r = 40m, consisting of
a BS in the center with M0 transmit and N0 receive antennas.
K = 2 UL and J = 2 DL users equipped with N antennas
randomly distributed in the cell7. For simplicity, we assume
M0 = N0 = N = Ñ . The CR system has L = 2 PUs, with
the same maximum allowed interfering power λl = 0dB. The
channel between BS and all users are assumed to experience
the path loss model for line-of-sight (LOS), and the channel
between UL and DL users are assumed to experience the
path loss model for non-line-of-sight (NLOS) communications.
Detailed simulation parameters are shown in Table V.

The estimated channel gain between the BS to kth UL
user is given by H̃UL

k =
√
κULk ĤUL

k , where ĤUL
k denotes

the small scale fading following a complex Gaussian dis-
tribution with zero mean and unit variance, and κULk =
10(−X/10), X ∈ {LOS,NLOS} represents the large scale
fading consisting of path loss and shadowing, where LOS
and NLOS are calculated from a specific path loss model
given in Table V. The channels between BS and DL users,
between UL users and DL users, between BS and PUs, and
between UL users and PUs are defined similarly. We adopt the
Rician model in [3], in which the SI channel is distributed as
H̃0 ∼ CN

(√
KR

1+KR
Ĥ0,

1
1+KR

IN0 ⊗ IM0

)
, where KR is the

Rician factor, and Ĥ0 is a deterministic matrix8. Unless stated
otherwise, we consider, Ñ = 2, κ = β = −70dB, ν = 0.5
and δ = θ = 0.1.

7Although the BS has N0 +M0 antennas in total, we assume that only
M0 (N0) antennas can be used for transmission (reception) in HD mode. This
assumption is similar to [15]. The reason is that in practical systems RF front-
ends are scarce resources, since they are much more expensive than antennas.
Therefore, we assume that BS only has M0 transmission front-ends and N0

receiving front-ends, and do not carry out antenna partitioning.
8Similar to [14], without loss of generality, we set KR = 1 and H̃0 to be

the matrix of all ones for all experiments.
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Fig. 3: Complexity, CPU time and iteration number comparisons of SDP and cutting-set
algorithm systems with respect to different number of antennas. In (a), 3 UL, 3 DL, 2
PU equipped with 3 antennas, and d = 2 data stream transmission is assumed.

Fig. 2 shows the evolution of the proposed algorithms, i.e.,
the convergence of the algorithms in Table I and Table III.
The monotonic decrease of the sum-MSE can be verified, and
is seen that the cutting set algorithm converges more rapidly
than SDP.

After establishing the convergence of the two algorithms, we
now present a thorough comparison of the SDP and cutting-
set methods in terms of computational complexity (complex
multiplications) and CPU time (time in secs required for
convergence)/iteration number (number of iterations required
to converge) in Fig. 3a and Fig. 3b, respectively with respect to
different number of antennas. Similarly, in Fig. 4a and Fig. 4b,
computational complexity and CPU time/iteration number are
plotted with respect to different number of users for the two
algorithms, respectively.9 Note that in Fig. 3b and Fig. 4b,
the bar plots represent the CPU time and lines represent the
number of iterations. As expected, cutting-set algorithm always
has the lowest complexity and requires less computational time
than SDP, especially at high number of antennas and users,
which is inline with our computational complexity analysis in
Table II and IV.

Next, we compare the sum-MSE performance of the pro-
posed SDP and cutting set algorithms under various κ = β
values in Fig. 5. From the figure, it can be seen that the
performance of the cutting set method is similar to the SDP
based one, but with a nominal performance gap. This loss in
performance is well compensated from the computational point
of view as the cutting set based method provides affordable

9For system guidelines we note that, the proposed algorithms are evaluated
centrally using MATLAB R20015a on a Linux server with Intel Xeon
processor (16 cores, each clocked at 2 GHz) and 31.4 GiB of memory.
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Fig. 4: Complexity, CPU time and iteration number comparisons of SDP and cutting-set
algorithm systems with respect to different number of users. In (a), 4 transmit/receive
antennas, 2 PU equipped with 3 antennas, and d = 2 data stream transmission is
assumed.
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Fig. 5: Sum-MSE comparison of SDP and cutting-set algorithms for an FD system with
respect to transmitter/receiver distortion, i.e., κ, β.

computational complexity with respect to its SDP counterpart.
To further highlight the similarities between the two algorithms
in terms of MSE performance, in Fig. 6, we compare the sum-
MSE performance of both SDP and cutting set algorithms
under different channel uncertainty sizes. When the channel
uncertainty size is small, both the algorithms perform similarly,
whereas with an increase in δ = θ values, the performance
gap between the two algorithm increases. The reason is that
cutting-set algorithm is derived based on the approximations
given in (32) and (36), where the second-order CSI errors
are ignored. Therefore, as the channel uncertainty size in-
creases, the effect of second-order CSI errors become more
apparent [55]. In Fig. 6, we also illustrate the performance
of the non-robust algorithm. The non-robust beamformer is
designed based on the nominal estimated value of the CSI
by setting the radius of the uncertainty region to zero. It is
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Fig. 6: Sum-MSE comparison of SDP, cutting-set and non-robust algorithms for an FD
system with respect to channel uncertainty, δ = θ. Here, κ = β = −40dB.

shown that the performance of the non-robust design which
assumes the estimated CSI as perfect is found to deteriorate
as the uncertainty region increases.

Hence, from the above results, we can conclude that the
SDP algorithm achieves lower MSE, but with the cost of slow
convergence and high CPU time, which is inline with our
computational complexity analysis in Table II and IV. On the
other hand, the cutting set method can be considered as a good
alternative to the SDP method, which offers a decent trade-off
between performance and computational complexity.

In our next example, we give the sum-rate comparison of
FD and HD systems as a function of κ = β values for
different number of antennas based on the SDP algorithm. We
would like to note that hereinafter, we have not included the
cutting-set algorithm, since we have observed that both SDP
and cutting-set algorithms give very similar performance. The
sum-rate of the MIMO FD cellular system assuming a linear
single-stream decoding at the receiver can be expressed as

Isum =
∑

i∈S

∑di

k=1
log2 (1 + SINRik) , (52)

where SINRik is SINR of the k-th stream of user i defined as

SINRik =
uHikHiivikvHikHH

ii uik

uHik

(
Σi +

∑
j 6=k Hiivijv

H
ij

HH
ii

)
uik

. (53)

In (53), uik and vik are the k-th column of Ui, and Vi,
respectively. It is seen in Fig. 7 that the performance of the
HD system is invariant to transmit/receive distortion κ and
β values, as expected and as the SI cancellation capability
increases, the sum-rate achieved by the FD system is around
1.6 times more than that of HD. However, at low SI cancella-
tion levels (below around κ = β = −55dB), the distortion is
magnified with the increasing number of antennas and the sum-
rate of the FD system starts being outperformed by that of HD
scheme. Note that transmitter/receiver distortion parameters
κ = β = −55dB refers to digital domain SI cancellation.
As mentioned in the fourth footnote, the main SI term has
been cancelled out in the analog domain, and the residual SI
is handled in the digital domain. Similar digital cancellation
values have also been reported experimentally in [4].

In Fig. 8, the importance of the smart channel assignment,
as a stage prior to the precoder/decoder design is depicted
for the SDP algorithm. The CCI attenuation represents the
provided isolation among the UL and DL users. It is seen that
as the suppression level of CCI increases (ν decreases), the FD
system starts outperforming the HD system, and thus isolation
among the UL and DL users is essential for a successful
coexistence of UL and DL users in an FD setup.
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FD, Ñ = 2

HD, Ñ = 2
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In Fig. 9, sum-rate comparison of FD and HD systems
under various κ=β values as a function of δ=θ based on the
SDP algorithm is shown. It can be seen that the FD results
deteriorate more than the HD ones for the same decrease CSI
quality. The reason is that when operating in FD mode, there
are more channel links between the various nodes than for
the corresponding HD systems. Having an increased amount
of links with imperfect knowledge result in a sharper rate
decrease, thereby stressing the added importance of channel
estimation and robust beamformer design for FD systems.

Finally, in Fig. 10 we compare the sum-rate performance
of the FD system with respect to path loss. As mentioned
previously, the path loss considered in this work is adopted
from the 3GPP model [59], where it depends on the distance d
between the BS and users. Here, d is in meters and is a random
variable. In particular, we begin by randomly generating the
coordinate positions of the UL and DL users inside the
circumference of the cell, while the BS is located at the centre
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Fig. 10: Sum-rate comparison of FD and HD systems for various coordinate positions of
the UL users. The x-axis represents the coordinate positions of the UL users, i.e., Xi,j ,
with j ∈ {1, 2} and i = [1, 2, 3, 4, 5]. Here, ||X1,j ||2 < · · · < ||X5,j ||2.

of the cell with coordinates (0, 0). The first coordinates for
the UL users, Xi,j = (xi,j , yi,j) is generated such that the
distance from the BS, di,j = ||Xi,j ||2 ≤ 10m. Now, without
altering the coordinates of the DL users, we start displacing
the coordinates of the UL users with respect to the BS in
steps of 5m until it reaches the cell edge. It can be seen
that when the distance of the UL users increases, the sum-
rate of the FD system monotonically decreases to reach an
optimal point at coordinate position X4,j before increasing
again at coordinate position X5,j . This can be explained as
follows. When the distance of the UL users from the BS
increases, the path loss increases, resulting in a decrease of
the received signal power at the BS. As a result the residual
SI power at the BS overwhelms the received signal power.
Furthermore, as seen from Fig. 8, in FD systems the CCI
is another important factor that affects FD systems. While
displacing the coordinates of the UL users away from the
BS, UL users may tend get closer to the DL users, which
is when the CCI overwhelms the DL users. As a result, the
sum-rate of the FD system falls alarmingly below the sum-
rate of the HD system. Here, coordinates X3,j and X4,j are
the two worst case scenarios. However, as the UL users move
even farther, the CCI on the DL users starts decreasing and
the sum-rate of the FD system increases again. At coordinate
X5,j , the UL of the FD system is almost inoperable and
the system is operating only in DL mode. Here, the path
loss affecting the UL transmission is so high that the signal
power can no longer be differentiated from the residual SI
power at the BS. Numerically, average of X5,j is found as
X5,1=(26.3764, 23.9888) and X5,2=(26.7644,−28.9238). At
this point the sum-rate of the FD system is comparable to that
of the DL of the HD system. Further, it can also be seen from
the figure that the UL sum-rate of the HD system decreases
monotonically. This is due to the fact that as the distance
between the UL users and the BS increases, the path loss
increases, which in turn decreases the signal power resulting
in reduction of the sum rate in the UL of the HD. However, as
the coordinates of the DL users are not altered, the sum-rate
for the DL users in HD mode are not affected and remains
constant, which can be seen from the figure as well.

VII. CONCLUSION

We have tackled the sum-MSE minimization problem for
an FD MIMO CR cellular system that suffers from the trans-
mit/receive distortions and the imperfect CSI. Two algorithms
are proposed to solve this non-convex problem, i) an iterative
SDP-based algorithm that computes the transmit and receiving
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filters jointly, ii) a two-step cutting-set method that alternates
between transceiver design and worst-case channel analysis. As
simulation results demonstrate, the cutting-set method achieves
a similar performance to that of the SDP-based method with a
lower computational complexity. Moreover, it has been shown
in simulations that replacing standard HD networks with FD
ones within this context can indeed increase achievable sum
rate for low to intermediate distortion levels.

APPENDIX A: PROBLEM REFORMULATION

To solve the optimization problem (20), we first write it in
a more compact form for ease of exposition. To that end, we
write tr{MSEi} and IPUl in (20) in vector forms. As shown
in Appendix B, the vector forms of tr{MSEi} and IPUl can
be written as tr{MSEi} = ‖µi‖

2
2 and IPUl = ‖ιl‖22, where

µi and ιl are given as

µi=



(
VT
i ⊗UH

i

)
vec (Hii)− vec (Idi)⌊(

VT
j ⊗UH

i

)
vec (Hij)

⌋
j∈S,j 6=i⌊⌊√

κ
(
(Γ`Vj)

T ⊗UH
i

)
vec (Hij)

⌋
`∈D(T )

j

⌋
j∈S⌊⌊√

β
(
VT
j ⊗ (UH

i Γ`)
)
vec (Hij)

⌋
`∈D(R)

i

⌋
j∈S

σivec (Ui)


(54)

ιl =

 ⌊(
VT
j ⊗ ITl

)
vec (Glj)

⌋
j∈S√

κ
⌊⌊(

(Γ`Vj)
T ⊗ ITl

)
vec (Glj)

⌋
`∈D(T )

j

⌋
j∈S

, (55)

where D(R)
j represents the set {1 · · · Ñj}, D(T )

j represents the
set {1 · · · M̃j} and Γ` is a square matrix with zero elements,
except for the `-th diagonal element, equal to 1. Using the
vector forms (54) and (55), the problem (20) can be rewritten
as

min
V,U,τ

∑
i∈S

τi (56a)

s.t. ‖µi‖
2
2 ≤ τi, ‖∆i‖F ≤ δi, i ∈ S, (56b)

‖vec (Vi)‖22 ≤ Pi, i ∈ SUL, (56c)
‖bvec (Vi)ci∈SDL‖22 ≤ P0, (56d)

‖ιl‖22 ≤ λl, ‖Λl‖F ≤ θl, l = 1, . . . , L. (56e)
Semi-infinite optimization problems can be formulated in

terms of LMIs. Such a reduction, if possible, has important
practical consequences: It means that those semi-infinite prob-
lems can be solved efficiently with interior-point methods for
LMI problems [42]. Note that the constraints (56b) and (56e)
are not in the form of an LMI because the optimization
variables do not appear linearly in these constraints. To recast
the semi-infinite problem (56) as a SDP problem, the Schur
complement lemma [42] is used to rewrite the constraints (56b)
and (56e) in LMI form10.

The resulting optimization problem is written as

min
V,U,τ

∑
i∈S

τi (57a)

s.t.
[
τi µHi
µi IAi

]
� 0, ‖∆i‖F ≤ δi, i ∈ S, (57b)

‖vec (Vi)‖22 ≤ Pi, i ∈ SUL, (57c)

10Schur Complement Lemma is stated as follows: Let Q and R be
symmetric matrices. Then the following two expressions are equivalent.[

Q S
S∗ R

]
� 0 , R � 0, Q− SR−1S∗ � 0.

‖bvec (Vi)ci∈SDL‖22 ≤ P0, (57d)[
λl ιHl
ιl IBl

]
� 0, ‖Λl‖F ≤ θl, l = 1, . . . , L,(57e)

where the dimensions of the identity matrices in (57b)
and (57e) are given in (22) and (23), respectively.

To further simplify the problem (57), the following lemma
from [32] is used to relax the semi-infiniteness of the con-
straints (57b) and (57e), see also [45] for a similar approach.

Lemma 1: Given matrices P, Q, A with A = AH , the
semi-infinite LMI of the form of

A � PHXQ + QHXHP, ∀X : ‖X‖F ≤ ρ,
holds if and only if ∃ε ≥ 0 such that[

A− εQHQ −ρPH

−ρP εI

]
� 0. (58)

To apply Lemma 1, we need to separate the estimated
channel and the channel estimation error. To this end, the LMI
in (57b) is first expressed as[

τi µ̃Hi
µ̃i IAi

]
+

[
0 µH∆i

µ∆i
0Ai×Ai

]
� 0, (59)

where µ̃i is defined in (24) and µ∆i
= D∆i

vec (∆i), where
D∆i

is defined in (25). By choosing

A =

[
τi µ̃Hi
µ̃i IAi

]
, P =

[
0ÑiM̃×1, DH

∆i

]
, (60)

X = vec (∆i) , Q = [−1,01×Ai
] , (61)

and applying Lemma 1, the LMI in (57b) is relaxed as τi − εi µ̃Hi 01×ÑiM̃
µ̃i IAi

−δiD∆i

0ÑiM̃×1 −δiDH
∆i

εiIÑiM̃

 � 0, i ∈ S, (62)

εi ≥ 0, i ∈ S. (63)
Using a similar procedure, the LMI in (57e) is expressed as[

λl ι̃Hl
ι̃l IBl

]
+

[
0 ιHΛl

ιΛl
0Bl×Bl

]
� 0, (64)

where ι̃l is given in (26) and ιΛl
= EΛl

vec (Λl), where EΛl

is defined in (27). Then the LMI in (57e) is relaxed as λl − ηl ι̃Hl 01×TlM̃

ι̃l IBl
−θlEΛl

0TlM̃×1 −θlEH
Λl

ηlITlM̃

 � 0, l = 1, . . . , L, (65)

ηl ≥ 0, l = 1, . . . , L. (66)
Using the relaxed LMIs in (62) and (65), the SDP problem,
which is equivalent to (19) can be formulated as (21).

APPENDIX B: MSE COMPUTATION

Using (13), tr{MSEi} can be written as

tr{MSEi} = tr
{(

UH
i HiiVi − Idi

) (
UH
i HiiVi − Idi

)H
+ UH

i ΣiUi

}
= tr

{(
UH
i HiiVi − Idi

) (
UH
i HiiVi − Idi

)H}
(67)

+
∑

j∈S,j 6=i
tr
{
UH
i HijVjV

H
j HH

ijUi

}
+ σ2

i tr
{
UH
i Ui

}
+
∑

j∈S

∑
`∈D(T )

j

κtr
{
UH
i HijΓ`VjV

H
j ΓH` HH

ijUi

}
+
∑

j∈S

∑
`∈D(R)

i

βtr
{
UH
i Γ`HijVjV

H
j HH

ijΓ
H
` Ui

}
,
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where D(R)
j represents the set {1 · · · Ñj}, D(T )

j represents
the set {1 · · · M̃j} and Γ` is a square matrix with zero
elements, except for the `-th diagonal element, equal to 1.
Applying the vec(·) operation, and the identity ‖vec (A) ‖22 =
tr
{
AAH

}
, (67) can be rewritten as

tr{MSEi} =
∥∥vec (UH

i HiiVi

)
− vec(Idi)

∥∥2

2
(68)

+
∑

j∈S,j 6=i

∥∥vec (UH
i HijVj

)∥∥2

2
+ σ2

i ‖vec (Ui)‖22

+
∑

j∈S

∑
`∈D(T )

j

κ
∥∥vec (UH

i HijΓ`Vj

)∥∥2

2

+
∑

j∈S

∑
`∈D(R)

i

β
∥∥vec (UH

i Γ`HijVj

)∥∥2

2
.

Using the identity vec(ABC) =
(
CT ⊗A

)
vec (B), (68) can

be written as ‖µi‖
2
2, where µi is given in (54).

Similar to (68), IPUl can be written as

IPUl =
∑

j∈S

(
‖vec (GljVj)‖22

+
∑

`∈D(T )
j

κ ‖vec (GljΓ`Vj)‖22

)
. (69)

Using the identity vec(ABC) =
(
CT ⊗A

)
vec (B), (69) can

be written as ‖ιl‖22, where ιl is given in (55).
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