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Abstract

In this paper, we consider a downlink multiuser network operating with finite blocklength codes under statistical quality of
service (QoS) constraints. Optimal power allocation algorithms are studied to maximize the normalized sum throughput under
QoS constraints, while considering different types of data arrivals namely, constant-rate, Markov, and Markov-modulated Poisson
arrivals. We first determine the finite blocklength (FBL) throughput formulations and subsequently state optimization problems.
We show the convexity of the power allocation problem under certain conditions and propose optimal algorithms (for scenarios
with different data arrivals). In addition, the FBL performance of equal power allocation and a sub-optimal power allocation
algorithm is discussed. Via numerical analysis, we demonstrate the performance improvements with the optimal power allocation.
In addition, we provide interesting insights on the system behavior by characterizing the impact of the error probability, the
QoS-exponent, blocklength, the number of users and the source burstiness on the performance.
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I. INTRODUCTION

Low-latency and high reliability have become two major concerns in the design of future wireless networks. In particular,
researchers and designers of next-generation wireless networks are increasingly interested in having wireless links support delay-
sensitive data traffic generated in applications such as haptic feedback in virtual and augmented reality, E-health, autonomous
driving, industrial control applications and cyber-physical systems. In the design of new cellular networking architectures, e.g.,
5G New Radio, this concept is related to ultra-reliable low latency communication (URLLC) [1], [2]. Similar feature topics of
low latency applications are also widely discussed in the context of Internet of Things [3] and industrial wireless networks [4]
for the future industry design, i.e., Industry 4.0. The common characteristic of these discussed scenarios is that the network
serves multiple users/terminals while the coding blocklengths for wireless transmission are quite short due to the low latency
constraint.

Yet, as another delay-sensitive scenario, mobile multimedia traffic has experienced an exponential growth in recent years.
With this, providing certain quality-of-service (QoS) guarantees to users has also become a critical consideration in the design
of future wireless networks. Generally, it is expected that constraints on delay, packet error probability and buffer overflow
probabilities at various levels need to be satisfied for multiple users. For such networks operating under low latency requirements
with finite blocklength codes, resource management is a challenging task even if the system supports only one class of traffic.
The problem becomes more difficult and challenging when users have different levels of QoS requirements and when the source
traffic and channel conditions randomly vary over time. Existing works on resource allocation under QoS constraints mainly
consider constant data arrival rates. For instance, optimal power allocation schemes are proposed to satisfy QoS requirements
for a two-hop wireless relay network in [5], and a downlink multi-user network in [6]. Energy efficient optimizations are studied
in virtualized small cell networks [7] and industrial networks [8] under delay constraints. An energy-efficient design is proposed
in [9] under the specific statistical QoS guarantees of a multi-user network. In [10], an optimal resource allocation algorithm
is proposed for a QoS-constrained device-to-device (D2D) communication network. In addition, a sub-optimal power control
policy is proposed in [11] for non-orthogonal multiple access (NOMA) networks with QoS constraints. There are also several
related studies in different contexts that consider random data arrivals. Optimal energy control is addressed in [12] for energy-
constrained wireless networks. Throughput and energy efficiency are studied in [13] in the presence of randomly arriving data
and statistical queuing constraints. A QoS-driven power control policy is proposed in [14] for fading multiple-access channels.
However, all of the above studies on resource allocation in QoS-constrained networks (considering either constant or random
arrivals) are performed under the ideal assumption of communicating arbitrarily reliably at Shannon’s channel capacity, i.e.,
codewords are assumed to be infinitely long.

On the other hand, it is more accurate to incorporate finite blocklength coding assumptions into the analysis when low-
latency applications are considered. In such finite blocklength (FBL) coding regime, the data transmission is no longer arbitrarily
reliable. Especially when the blocklength is short, the error probability becomes significant even if the rate is selected below
the Shannon limit. Taking this into account, an accurate (normal) approximation of the achievable coding rate under the finite
blocklength assumption for an additive white Gaussian noise (AWGN) channel was derived in [15] for a single-hop transmission
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system. Subsequently, the initial work for AWGN channels was extended to Gilbert-Elliott channels [16] as well as quasi-static
fading channels [17]–[19], QoS-constrained networks [20], [21] and relaying networks [22]–[25]. In [26], the achievable FBL
coding rate (physical-layer performance) is derived for a single user model with a power controller (namely truncated channel
inversion) under a long-term power constraint. However, power allocation in QoS-constrained multi-user networks has not
been addressed in the FBL regime, and especially the link-layer performance has not been formulated and optimized for either
constant-rate source or random data source scenarios. In fact, an FBL code is a double-edged sword for QoS-constrained multi-
user networks. More specifically, a short bocklength generally leads to a flexible departure process (improving the queuing
performance) but also a relatively high error probability (degrading the queuing performance). Hence, it is interesting and
challenging to design power allocation policies that maximize the QoS-constrained performance of multi-user networks in the
FBL regime.

In this paper, we study the optimal power allocation for a QoS-constrained multi-user URLLC network. We initially consider
constant-rate sources, and then take into account the stochastic nature of information flows and investigate the effect of the
randomness and burstiness of the source traffic on the power allocation in a downlink multi-user wireless network operating
with FBL codes. Specifically, we consider Markovian source models (namely discrete-time Markov, Markov fluid, and both
discrete-time and continuous-time Markov modulated Poisson processes (MMPP)) and determine the optimal power allocation
policies. The key contributions of this paper can be further detailed as follows:
• The QoS-constrained FBL performance metrics are formulated for both constant-rate and four different types of random

data arrivals. In particular, the normalized throughput of each user is derived and proved to be conditionally concave in
the transmit power.

• For all data arrival models, we state the power allocation problem that maximizes the normalized sum throughput by
optimally allocating the power over users and over time. We prove the convexity of the optimization problem and propose
algorithms to solve them. In other words, an analytical framework is provided to study the optimal power allocation
in downlink wireless transmissions with FBL codes in the presence of random data arrivals and statistical queueing
constraints.

• We further study two additional approaches. Specifically, one is equal power allocation while the other one is a proposed
sub-optimal power allocation algorithm. In particular, the sub-optimal algorithm is developed to maximize the expected
throughput by optimally allocating power among users within a frame (i.e., without considering power allocation over
time).

• Via numerical analysis, we demonstrate the performance advantages of the proposed optimal power allocation algorithm.
In addition, we provide characterizations for the impact of the error probability, QoS-exponent, coding blocklength, the
number of users and the source randomness on the performance.

The remainder of the paper is organized as follows: In Section II, we describe the system model and briefly provide the
background on the FBL regime and statistical queuing constraints. We study optimal power allocation under constant arrivals to
maximize the FBL throughput in Section III. The optimization problem is extended to random arrival scenarios in Section IV,
where optimal power allocation algorithm are proposed for four different source models. In addition to the optimal algorithm,
the equal power allocation algorithm and a proposed sub-optimal power allocation algorithms are discussed in In Section V.
We provide our numerical results in Section VI and finally conclude the paper in Section VII. It should be mentioned that
constant data arrival part of this work has been published as a conference version in [27].

II. PRELIMINARIES

In this section,the system model is first described. Subsequently, we briefly provide the background on FBL regime and
statistical queuing constraints.

A. System Description

We consider a downlink broadcasting scenario where a transmitter (e.g., an access point or a base station) sends data
packets to N users. As shown in Fig. 1, the transmitter has N buffers corresponding to the N users, while each buffer has
an independent data source. The entire system operates in a slotted fashion where time is divided into frames of length M
symbols. In each frame, the transmitter collects N packets from these N buffers and sends packets to the corresponding users
in different slots, as shown in Fig. 2. In particular, a frame has N slots for orthogonal transmissions to N users, and each slot
has a length of m symbols, i.e., Nm = M . We consider a practical data arrival model, in which data arrivals at the transmitter
are modeled as constant-rate or Markovian processes (as detailed in Section IV-A). In addition, data transmission to the users
is subject to certain QoS constraints in the form of limitations on the target error probability and queueing delay (which is
parametrized by the QoS exponent). And users can have different levels of QoS requirements. In particular, the target error
probability and QoS factor of user i are denoted by εi and θi, respectively.

Channels are assumed to experience quasi-static fading, and therefore the channel fading remains the same within each
frame and vary independently from one frame to the next. The instantaneous channel state information (CSI) of each link is
assumed to be available at the transmitter. Denote the set of instantaneous channel gains by z = {zi, i = 1, ..., N} where zi is
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Fig. 2. Frame structure of the considered network.

the gain of the channel from the transmitter to user i. Note that the channel gains are time-varying, and we denote the joint
probability density function (PDF) of z by fPDF(z). Then, the signal-to-noise ratio (SNR) of the received signal at user i is
given by γi = pizi

σ2 , where σ2 is the noise variance and pi is the power used for transmission from the transmitter to user i.
Moreover, the (long term) average power constraint at the transmitter is denoted by pave, i.e., E{

∑N
i=1mpi} ≤Mpave.

B. Finite blocklength codes

In [15], the authors analyzed the performance in the FBL regime by applying the normal approximation. In comparison to
the Shannon capacity bound, the finite blocklength model is more accurate when the blocklength is finite/short. In addition,
the third-order term in the normal approximation for the AWGN channel is further addressed in [28]. For an AWGN channel,
the coding rate r (in bits per channel use) with error probability 0 < ε < 1, SNR γ, and blocklength m is shown to have the
following asymptotic expression [28]:

r = R (γ, ε,m) ≈ C (γ)−
√
V (γ)

m
Q−1 (ε) +

logm

m
, (1)

where Q (x) =
∫∞
x

1√
2π
e−t

2/2dt is the Gaussian Q-function.
Form (1), the (block) error probability can be expressed as:

ε = P (γ, r,m) ≈ Q

(
C (γ) + logm

m − r√
V (γ)/m

)
. (2)

In this work, we consider a QoS-constrained downlink network operating over quasi-static fading channels. Note that in
the quasi-static model, the channel varies from one frame to the next but is static within each frame. Hence, in the following
sections we apply the above model in our study of the performance of the considered network. As these approximations have
been shown to be accurate for a sufficiently large value of m [15], for simplicity we will employ them as the rate and error
expressions in our analysis. It should be mentioned that the achievable FBL coding rate in a quasi-static fading channel is
derived in [26] for a single-user model under a long-term power constraint with a simple power control policy, namely truncated
channel inversion. This policy performs channel inversion when the channel gain is higher than a threshold, otherwise, it turns
off the transmission. The decisions/results obtained with this simple power control policy are different from the power allocation
in our work, which maximize the QoS-constrained throughput of multiple users with potentially different QoS requirements.
Therefore, the proposed power allocation results in a different performance level in a different setting (with QoS constraints)
in comparison to the model in [26] with the truncated channel inversion.

C. Statistical queuing constraints

Throughout this paper, we assume that the transmissions to all users are performed under queuing constraints, which require
the buffer overflow probabilities to decay exponentially fast [29]. Let us denote Q as the stationary queue length and θ as
the decay rate of the tail of the distribution of the queue length Q. Then, the probability that the queue length Q exceeds a
threshold q satisfies

P (Q ≥ q) ≈ ςe−θq, (3)

where ς is probability of non-empty buffer. In addition, θ is called the QoS exponent, and is defined in [30] as

lim
q→∞

logP (Q ≥ q)
q

= −θ. (4)
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Note that small and large θ correspond to relatively loose and strict QoS constraints, respectively. In other words, QoS exponent
θ controls the exponential decay rate of the buffer overflow probability. More specifically, larger θ indicates stricter limitation
on the buffer overflow probability (or delay violation probability), leading to more stringent QoS constraints, and vice versa
for small θ.

Following the queuing model in [29], [30], we denote by a (bits/frame) and c (bits/frame) the instantaneous arrival and
departure rates at the buffer, respectively. According to the effective bandwidth and effective capacity formulations in [29],
[30], in the presence of queuing constraints specified by the QoS exponent θ, the arrival process and departure process at the
buffer should satisfy

Λa (θ) + Λc (−θ) = 0, (5)

where Λs (θ) = lim
t→∞

1
t logE{eθ

∑t
k=1 sk} is introduced in [Eq. 6, 27], which denotes the asymptotic logarithmic moment

generating function (LMGF) of the random process sk.
Based on the LMGFs, the effective bandwidth is [30]

aE(θ) =
Λa (θ)

θ
. (6)

In addition, the effective capacity is given in [29] as

RE(θ) = −Λc (−θ)
θ

, (7)

and characterizes the maximum constant arrival rate that can be supported by the link with a random service process while
satisfying (3).

In this work, we adopt the effective capacity formulation to obtain the average throughput of the scenario with constant
data arrivals. Additionally, we consider four types of random Markovian sources1, namely 1) discrete Markov source, 2)
Markov fluid source, 3) discrete-time Markov-modulated Poisson process (MMPP), 4) continuous-time MMPP. In particular,
we consider two-state Markovian arrival models with ON and OFF states. In such a case, if Pon is the probability that the
data source for a user is in the ON state with arrival rate a, the average arrival rate of the two-state Markovian source models
simply becomes

µ = Pona, (8)

which is equal to the average departure rate when the queue is in steady state [34].

III. FBL THROUGHPUT OF MULTI-USER NETWORKS WITH CONSTANT ARRIVALS

In this section, we study the optimal power allocation for the downlink multiuser network with constant data arrivals to the
buffers at the transmitter. First, we will develop the performance model. Subsequently, the optimization problem will be stated
and solved.

A. FBL throughput model
With constant data arrivals, the FBL throughput is given by the effective capacity. If user i has a given (target) error

probability εi and a given (target) QoS exponent θi, the effective capacity in the units of bits/frame is actually a function of
the transmit power policy {pi}, and is expressed as

RE,i = − 1

θi
ln
{
E
[
e−θimri(1− εi) + εi

]}
, (9)

where coding rate ri, which is given in (1), is a function of the transmit power pi and channel fading gains via the received
SNR γ, and the expectation above is with respect to the distribution of the fading coefficients. First, we have the following
Proposition.

Proposition 1. In a system with target error probability εi ≥ 10−24 and blocklength m ≥ 100, the coding rate ri is increasing
and concave in the transmit power pi under the constraint γi ≥ 0 dB.

Proof: Let Ai = Q−1 (εi)
√

1
m . Then, according to (1), we have the first derivative of ri with respect to the SNR γi given

as (10) and the second order derivative given as (11) on the next page.

∂ri
∂γi

=
log e

1 + γi
− Ai log e√

1− 1
(1+γi)

2

1

(1 + γi)
3 . (10)

1The consideration of Markovian sources is motivated by the fact that certain types of delay-sensitive data traffic can be modeled as Markovian processes.
For instance, voice traffic can be modeled as an ON/OFF Markov process, and variable bit-rate (VBR) video traffic is generally modeled as Markov-modulated
processes [31]. Moreover, data arrival processes in machine-to-machine and automotive machine type communication can also be treated as Markovian
processes [32], [33].
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∂2ri
∂γi2

= − log e

(1+γi)
2 +

Ai log e(
1− 1

(1+γi)
2

) 3
2

1

(1+γi)
6 +

Ai log e√(
1− 1

(1+γi)
2

) 3

(1+γi)
4

=− log e

(1+γi)
2+

Ai log e(
(1+γi)

2−1
)3

2

1

(1+γi)
3+

Ai log e√
(1+γi)

2−1

3

(1+γi)
3 =

log e

(1+γi)
3

{
−(1+γi)+

Ai

(γi2+2γi)
3
2

+
3Ai√
γi2+2γi

}
.

(11)

In the following, we prove the proposition by showing ∂2ri
∂γi2
≤ 0. We distinguish the following two cases. First, if εi ≥ 0.5,

we quickly have Ai ≤ 0. Then ∂2ri
∂γi2

< 0. In the other case εi < 0.5, ∂2ri
∂γi2

is increasing in Ai and therefore decreasing in

εi and m. For an extreme scenario where m = 100, εi = 10−24, we have Ai = 1.0199. Then, ∂2ri
∂γi2

≤ 0 if φ (γi) ≤ 0,
where φ (γi) = − (1 + γi) + Ai

(γi2+2γi)
3
2

+ 3Ai√
γi2+2γi

. Obviously, φ (γi) is decreasing in γi for Ai > 0. In particular, we have

φ (1) = −0.0372 for Ai = 1.0199. Hence, in the second case φ (γi) < 0 for γi ≥ 1 = 0 dB. To sum up, the coding rate
ri is concave in the transmit power pi under the constraint guaranteeing γi ≥ 0 dB while the target error probability and
blocklength are within practical interest, i.e., m ≥ 100, εi ≥ 10−24.

We note that general formulations and conditions to establish the concavity of the coding rate are provided above in the
proof of Proposition 1, and these can be used to establish the range of SNR values for given coding blocklength m and target
error probability εi. Indeed, we can easily show that for more practical scenarios, the concavity holds for even lower SNR
bounds: e.g., SNR intervals in which concavity is satisfied are i. [−3 dB,∞] for m = 100, εi = 10−10, ii. [−6 dB,∞] for
m = 300, εi = 10−5, iii. [−11 dB,∞] for m = 300, εi = 10−1, iv. [−13 dB,∞] for m = 1000, εi = 10−1.

Based on the above statements, we have the following characterization for the effective capacity as a function of the transmit
power.

Proposition 2. With constant arrivals, the FBL throughput (effective capacity) RE,i is concave in the transmit power pi under
the SNR constraint γi ≥ 0 dB.

Proof: Note that for a given εi, RE,i is a function of ri while ri is determined by the received SNR γi (corresponding
to pi). Hence, the first and second order derivatives of RE,i with respect to pi can be given as follows:

∂RE,i

∂pi
=
∂RE,i

∂ri

∂ri
∂γi

∂γi
∂pi

=
∂RE,i

∂ri

∂ri
∂γi
· zi
σ2
, (12)

∂2RE,i

∂pi2
=
( zi
σ2

)
2 ∂

2RE,i

∂ri2

(
∂ri
∂γi

)
2+
( zi
σ2

)
2 ∂RE,i

∂ri

∂2ri
∂γi2

. (13)

According to (9), ∂RE,i

∂ri
and ∂2RE,i

∂ri2
can be obtained as follows. Note that E

[
e−θimri(1− εi) + εi

]
=
∫
z1

...
∫
zN

{
e−θimri(1−εi)+εi

}
fPDF (z) · dz1 ...dzN .

Then, ∂E[e−θimri (1−εi)+εi]
∂ri

= me−θimri(1− εi)fPDF (z) holds. Therefore, we have (14) and (15) on the next page.

∂RE,i

∂ri
= − 1

θi

∂E[e−θimri (1−εi)+εi]
∂ri

E [e−θimri(1− εi) + εi]

=
me−θimri(1− εi)fPDF (z)

E [e−θimri(1− εi) + εi]
≥ 0,

(14)

∂2RE,i

∂ri2
= m(1− εi)fPDF (z)

−θime−θimriE
[
e−θimri(1− εi) + εi

]
− ∂E[e−θimri (1−εi)+εi]

∂ri
e−θimri

E[e−θimri(1− εi) + εi]
2

= −θim2e−θimri(1− εi)fPDF (z)
E
[
e−θimri(1− εi) + εi

]
− e−θimri(1− εi)2

fPDF (z)

E[e−θimri(1− εi) + εi]
2 .

(15)

It is clear that ∂RE,i

∂ri
≥ 0. In addition, ∂

2RE,i

∂ri2
≤ 0 due to the fact that E

[
e−θimri(1− εi) + εi

]
≥
(
e−θimri(1− εi) + εi

)
fPDF (z) ≥

e−θimri(1 − εi)fPDF (z) ≥ e−θimri(1− εi)2fPDF (z). Combining this with Proposition 1, we have ∂2ri
∂p2i

≤ 0 under the
constraint guaranteeing γi ≥ 0 dB. Hence, RE,i is concave in pi when γi ≥ 0 dB.
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B. Problem statement

Recall that we consider a downlink multiuser URLLC network where users potentially have different QoS requirements,
i.e., the QoS exponent θi and target error probability εi of transmissions for users i = 1, ..., N are not necessarily the same.
Our objective is to improve the normalized sum throughput, i.e., RE,sum = 1

M

∑N
i=1RE,i, in bits/ch.use. Although users

have different QoS requirements, each user requires a basic connection/transmission guarantee as long as the channel state is
sufficiently good, i.e., zi ≥ zmin ≥ σ2

Npave
. This requirement in terms of SNR arises from the condition that γi = pizi

σ2 ≥ γth,i ≥ 0
dB, i = 1, ..., N . On the other hand, due to the randomness of the fading it is possible that zi ≤ zmin. In such a case, we
simply allocate zero power for this user in this frame. For example, if zi ≤ σ2

Npave
, guaranteeing a 0 dB received SNR for

user i costs more than the sum of average power of all N users, potentially leading to unfair resource allocation. Hence, it is
reasonable to skip this user in the power allocation.

More importantly, we maximize the objective by optimally allocating power over frames (i.e., over time) and among users,
while satisfying the average power constraint (averaged over time and users), i.e., Ez

{∑N
i=1 pi

}
≤ Mpave/m, where z =

{zi, i = 1, ..., N}. Hence, the optimal power allocation p∗i for user i in a frame is decided by not only the instantaneous
channel gain zi but also the distribution of the channel gains of all users, i.e., zi, for i = 1, ..., N .

Based on the above analysis, the problem of optimizing the power allocation among users and across frames in the downlink
multiuser network with constant arrivals is stated as follows:

max
p∈Ω

RE,sum =
1

M

N∑
i=1

RE,i

s.t. : Ez

{
N∑
i=1

pi

}
− Mpave

m
≤ 0,

(16)

where p = {pi, i = 1, ..., N} and pi is influenced by zi and the joint probability density function (PDF) of z1, ..., zN . In
addition, Ω = {Ωi}N , where Ωi is the admissible/feasible set of pi, given by

Ωi =

{
pi ≥ γth,i

σ2zi
, if zi ≥ zmin,

pi = 0, if zi < zmin,
(17)

for i = 1, . . . , N .

C. Optimal power allocation

To solve Problem (16), we first show its convexity in the following proposition.

Proposition 3. Problem (16) is a convex optimization problem.

Proof: According to (13), we have ∂2RE,i

∂2pi
≤ 0 for γi = pizi

σ2 ≥ γth,i ≥ 0 dB.
Then, the Hessian matrix of the objective function in Problem (16) with respect to p is given by

1
M

∂2RE,1

∂2p1
0

. . .

0 1
M

∂2RE,N

∂2pN

 , (18)

which is negative semidefinite in the admissible set Ω. Hence, the objective function is concave. In addition, the first constraint
(i.e., the average power constraint) is affine in {pi}. Therefore, Problem (16) is a convex optimization problem.

In the following, we state the Lagrange dual function of the Problem (16). We introduce the Lagrange multiplier λ associated
with the average power constraint. Then, the dual function is given by

L =
1

M

N∑
i=1

RE,i − λEz

{
N∑
i=1

pi −
Mpave

m

}
. (19)

By solving ∂L
∂pi(z)

= 0, we can determine the dual optimal. Now, let us introduce gi as (20) on the next page. With this, we can
express the effective capacity as RE,i = − 1

θ ln gi. Then, we can express the first order derivative of gi with respect to pi for a
given channel realization z by (21) on the next page, where we define ηi = θi

ln 2 and ai = 1− (1 + γi)
−2

= 1−
(
1 + pizi

σ2

)−2
.

Then, we have

∂L

∂pi(z)
=

1

M

∂RE,i

∂gi

∂gi
∂pi
− λ

= ϕi

(
1− Ai√

ai
(1−ai)

)
(1−ai)

ηim+1

2 eηimAi
√
ai−λ=0,

(22)
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gi = e−θRE,i = Ez

{
e−θimri(1− εi) + εi

}
= Ez

e
− θi

ln 2m

ln
(

1+
zipi(z)

σ2

)
−Ai

√√√√√
1− 1(

1+
zipi(z)

σ2

)2
+lnm

m


(1−εi) + εi


=

∫
z1

...

∫
zN

e
− θi

ln 2m

ln
(

1+
zipi(z)

σ2

)
−Ai

√√√√√
1− 1(

1+
zipi(z)

σ2

)2
+lnm

m


(1− εi)+εi

 fPDF (z) · dz1 · · · dzN .

(20)

∂gi
∂pi(z)

=−θi(1−εi)
ln 2

m

 1

1+γi
− Ai√

1− 1
(1+γi)

2

1

(1+γi)
3

zi
σ2
e
− θi

ln 2m

[
ln(1+γi)−Ai

√
1− 1

(1+γi)
2+lnm

m

]
·fPDF (z)

=−zi(1−εi)ηim
1−ηi

σ2

 1

1+γi
− Ai√

1− 1
(1+γi)

2

1

(1+γi)
3

 (1+γi)
−ηime

ηimAi

√
1− 1

(1+γi)
2

·fPDF (z)

=−zi(1−εi)ηim
1−ηi

σ2

(
1− Ai√

ai
(1− ai)

)
(1− ai)

ηim+1

2 eηimAi
√
ai · fPDF (z) .

(21)

where ϕi = zi(1−εi)ηim1−ηi

giMθσ2 fPDF (zi).
By solving the (22) within the admissible set {pi ∈ Ωi}, we can obtain the power solution λ∗ and p∗i . However, as seen in

the above discussion, it is unlikely to obtain a closed-form expression for the optimal power allocation policy, as the solution
of p∗i and λ are generally interdependent on each other. On the other hand, the optimal power allocation can be determined via
numerical computations. Therefore, we propose an algorithm described in Algorithm 1 below to obtain the optimal transmit
power numerically. The key idea of the algorithm is to first initialize the value of λ, gi and obtain the corresponding pi
according to (22). Subsequently, we update gi based on the obtained pi till gi converges to goi . Finally, we keep updating λ
till (22) is satisfied.

Algorithm 1 : Optimal Power Allocation Algorithm.

Initialization
1) for user i = 1, ..., N

a) if zi < zmin

b) then p∗i = 0 and go to Step 1 for the next user;
c) else Given λ, gi, determine pi according to (22).
d) According to (20), update gi based on pi and the PDF of z.
e) According to (22), update pi based on the updated gi in Step 1-d. If there is no solution in the admissible set, go to
Step 2-b.
f) Check if gi converges to a constant:
g) if the gap between the updated gi and the previous one become relatively constant and small enough
h) then gi converges. We have p∗i = max{pi, γth,iσ

2

zi
}, λ∗ = λ and converged g◦i = gi.

i) else return to Step 1-c.
endif

endif
endfor

2) Check if the sum of the obtained p∗i satisfy the average power constraint.
a) if not satisfied with equality
b) then update the value of λ and return to Step 1;
c) else the optimal power allocation is obtained, including λ∗ and the converged g◦i , i = 1, ..., N .

endif
Instantaneous power allocation per frame

a) According to (22), determine the optimal power p∗i for this frame based on the instantaneous z as well as the obtained
λ∗ and g◦i .
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In particular, Algorithm 1 has two parts: the first part is the initialization part while the subsequent one is the instantaneous
power allocation part. The optimal optimal power allocation policy is fully characterized by the optimal value λ∗ and the
converged g◦i in the initialization part. After the initialization, the optimal power can be determined by simply plugging the
instantaneous channel gains z together with λ∗ and g◦i into (22) and solving it, which has very low computational complexity.

IV. FBL THROUGHPUT OF DOWNLINK MULTIUSER NETWORKS WITH RANDOM ARRIVALS

In this section, we consider maximizing the average FBL throughput in downlink multiuser networks when data arrivals are
modeled by Markovian processes.

A. Discrete Markov Source

In this subsection, we assume that the data intended for each user is generated by a two-state discrete Markov source. Let
us define states 1 and 2 as the OFF and ON states, respectively. In the OFF state of the Markov source for user i, no data
arrives from the source for user i, and the arrival rate is ai (bits/frame) in the ON state. The state transition probability matrix
of the Markov data arrival at the source for user i can be expressed as

Gi =

(
pi,11 pi,12

pi,21 pi,22

)
, (23)

where pi,11 and pi,22 denote the probabilities that the source remains in the same state (more explicitly, OFF and ON states,
respectively) in the next time block, and pi,12 and pi,21 are the probabilities that source will transition to a different state in
the next time block. Using the properties of Markov processes, we can express the probability of the ON state as

Pon,i =
1− pi,11

2− pi,11 − pi,22
. (24)

Then, the average arrival rate of this ON-OFF Markov source for user i (in bits/symbol) is given by µi = Pon,iai/M .
According to [30], the LMGF of the arrival process of the data for user i is given by

Λai (θi) = ln
(gD-M,i

2

)
, (25)

where

gD-M,i =

√
(pi,11+pi,22eaiθi)

2 − 4 (pi,11+pi,22−1) eaiθi

+ pi,11+pi,22e
aiθi .

(26)

Hence, the effective bandwidth is given by aE,i =
Λai
θ .

For the departure process of the data sent to user i, the LMGF is given by

Λci (−θi)=−θiRE,i. (27)

Plugging the characterizations Λai (θ) and Λci (−θ) into (5) and solving for ai, we obtain

ai =
1

θi
ln

(
eθiRE,i

(
eθiRE,i − pi,11

)
1− pi,11 − pi,22 (1− eθiRE,i)

)
. (28)

Then, we obtain the FBL throughput of user i as

µi =
Pon,i

Mθi
ln

(
eθiRE,i

(
eθiRE,i − pi,11

)
1− pi,11 − pi,22 + pi,22eθiREi,

)
. (29)

We have the following proposition regarding the FBL throughput with discrete-time Markov data arrivals

Proposition 4. With discrete-time Markov data arrivals, the FBL throughput rate µi is increasing and concave in the coding
rate ri.

Proof: First, we show ∂µi
∂RE,i

> 0. According to (29), we have

∂µi
∂RE,i

=
Pon

M

(
1+

eθiRE,i

eθiRE,i−pi,11
− pi,22e

θiRE,i

1−pi,11−pi,22+pi,22eθiRE,i

)
=
Pon

M

(
1+

eθiRE,i−eθiRE,ipi,11−eθiRE,ipi,22+pi,11pi,22e
θiRE,i

(eθiRE,i−pi,11) (1−pi,11−pi,22+pi,22eθiRE,i)

)
=
Pon

M

(
1+

eθiRE,i(1−pi,11−pi,22+pi,11pi,22)

(eθiRE,i−pi,11) (1−pi,11−pi,22+pi,22eθiRE,i)

)
.

(30)
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Note that pi,11 ∈ [0, 1], pi,22 ∈ [0, 1] and eθiRE,i ≥ 1 as θiRE,i ≥ 0. Moreover, it holds that 1 − pi,11 − pi,22 + pi,11pi,22 =
(1 − pi,11)(1 − pi,22) ≥ 0. Thus, we have ∂µi

∂RE,i
> 0. For user i, the FBL throughput rate µi is strictly increasing in the

effective capacity RE,i.

In addition, accoding to (9), we have ∂RE,i

∂ri
= me−θimri (1−εi)

[e−θimri (1−εi)+εi]
≥ 0. Therefore, it holds that ∂µi

∂ri
= ∂µi

∂RE,i

∂RE,i

∂ri
≥ 0, i.e.,

the FBL throughput rate µi is increasing in the coding rate ri.
Then, we need to show that throughput µi is concave in coding rate ri. In [35], it is shown that effective bandwidth of

a Markovian source is strictly monotonically increasing and is also convex in source arrival rates ai. Therefore, the inverse
function of the effective bandwidth a−1

E,i (RE,i) exists and is a non-decreasing concave function of the effective capacity RE,i, i.e.,
∂µi
∂RE,i

≥ 0 and ∂2µi
∂R2

E,i
≤ 0. Note that ∂

2RE,i

∂r2i
≤ 0 according to (15). Hence, we have ∂2µi

∂r2i
= ∂2µi

∂R2
E,i

(
∂RE,i

∂ri

)2

+ ∂µi
∂RE,i

∂2RE,i

∂r2i
≤ 0.

Similarly as in the previous section, we consider optimal power allocation over time and among users to maximize the
normalized sum throughput in the FBL regime. The optimization problem is given by

max
p∈Ω

µsum =

N∑
i=1

µi

s.t. : Ez

{
N∑
i=1

pi

}
− Mpave

m
≤ 0,

(31)

where p = {p1, ..., pN} and Ω = {Ωi}N , where Ωi is the admissible set of pi, which is provided in (17).

Proposition 5. Problem (31) is a convex optimization problem.

Proof: According to Proposition 1, under the SNR constraint guaranteeing γi ≥ 0 dB, ∂
2ri
∂p2i
≤ 0. In addition, according to

Proposition 4, ∂
2µi
∂r2i
≤ 0 and ∂µi

∂ri
≥ 0. Therefore, we have ∂2µi

∂p2i
= ∂2µi

∂r2i

(
∂ri
∂pi

)2

+ ∂µi
∂ri

∂2ri
∂p2i
≤ 0. Hence, the FBL throughput µi

is concave in the transmit power pi under the SNR constraint guaranteeing γi ≥ 0 dB. Similarly as the proof of Proposition 3,
the Hessian matrix of the objective function in (31) can be shown to be negative semidefinite. As the constraints are affine,
Problem (31) is a convex optimization problem.

Then, the Lagrangian of Problem (31) is

L =

N∑
i=1

µi − λEz

{
N∑
i=1

pi −
Mpave

m

}
. (32)

Note that gD-M,i = e−θRE,i , and we can represent µi as a function of gD-M,i as

µi =
Pon,i

Mθi
ln

(
(1− pi,11gD-M,i)

(1− pi,11 − pi,22) gD-M,i + pi,22

1

gD-M,i

)
=− Pon,i

Mθi
ln ((1− pi,11 − pi,22) gD-M,i + pi,22)

+
Pon,i

Mθi
[ln (1− pi,11gD-M,i)− ln gD-M,i] .

(33)

Now, the first-order derivative can be expressed as

∂µi
∂gD-M,i

=− Pon,i

Mθi

1− pi,11 − pi,22

(1− pi,11 − pi,22) gD-M,i + pi,22

− Pon,i

Mθi

pi,11

1− pi,11gD-M,i
− 1

gD-M,i
.

(34)

Hence, the first order derivative of the Lagrangian with respect to pi is given by

∂L

∂pi
=

∂µi
∂gD-M,i

∂gD-M,i

∂pi
− λ. (35)

Letting ∂L
∂pi

= 0, we have (
1− Ai√

ai
(1− ai)

)
(1− ai)

ηim+1

2 eηimAi
√
aiφD-M,i − λ = 0, (36)

where φD-M,i = zi(1−εi)ηim1−ηi

σ2

Pon,i

Mθi
·
[

pi,11
1−pi,11gD−M,i

+
1−pi,11−pi,22

(1−pi,11−pi,22)gD-M,i+pi,22
+ 1

gD-M,i

]
.
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By solving the (36) within the admissible set Ωi provided in (17), we can determine the optimal power level p∗i . Compar-
ing (36) with (22), we notice that the procedures for solving the dual problems of (31) and (16) share the same structure. As
the two problems have the same constraints, Problem (31) can also be solved by applying Algorithm 1 by replacing (22) in
the algorithm with (36).

B. Markov Fluid Source

In this subsection, the data arrival is modeled as a continuous-time Markov process. For user i, the transition rate matrix of
the data arrival process at the source can be expressed as

Gi =

(
−αi αi
βi −βi

)
, (37)

where αi > 0 and βi > 0 are the transition rates between ON and OFF states for the data source generating information that
will be sent to user i. We again assume ai and 0 bits/frame arrive in the ON and OFF states, respectively. The LMGF of the
arrival process is expressed as [36]

Λai(θi)=θiai − (αi+βi)+

√
(θiai−(αi+βi))

2
+4αiθiai. (38)

Inserting the above equation into (5), we have (θiai−(αi+βi)−2θiRE,i)
2

=(θiai−(αi+βi))
2
+4αiθiai. Solving this equation,

we can express the FBL throughput (or equivalently the average arrival rate) for user i as

µi = ai
Pon,i

M
=
Pon,i

M

(
θiRE,i + αi + βi
θiRE,i + αi

)
RE,i, (39)

where Pon,i = αi
αi+βi

is the probability of the ON state.
As αi, βi, θi, M are non-negative, it is easy to show that

∂µi
∂RE,i

=
Pon,i

M

(
1 +

βiαi

(θiRE,i + αi)
2

)
≥ 0, (40)

∂2µi
∂R2

E,i

= −Pon,i

M

θiβiαi

(θiRE,i + αi)
3 ≤ 0. (41)

Hence, the FBL throughput µi (with Markov fluid source) is a non-decreasing concave function of the effective capacity, which
has the same characteristic as the one formulated for the discrete-time Markov source. Hence, Proposition 4 holds also for the
fluid source. Moreover, the power allocation problem (31) in the scenario with fluid source is also a convex problem. In fact,
if we state the Lagrangian L of the problem and let ∂L

∂pi
= 0, we have

λ−
(

1− Ai√
ai

(1− ai)
)

(1− ai)
ηim+1

2 eηimAi
√
aiφ′i = 0, (42)

where φ′i = zi(1−εi)ηim1−ηi

σ2
Pon

Mθ

[
αiβi

gC-M,i(αi−ln gC-M,i)
2 + 1

gC-M,i

]
. Comparing (42) with (36), we observe that the only difference is

in the φ′i term. Hence, Problem (31) can also be solved in the presence of the Markov fluid source by applying Algorithm 1,
i.e., by replacing (22) in the algorithm by (42).

C. Discrete-Time and Continuous-Time Markov-Modulated Poisson Processes (MMPP)

In this source model, the arrival of a user’s data to the transmitter buffer follows a Poisson process, whose intensity is
controlled by a Markov chain. We again consider a two-state model in which the intensity of the Poisson arrival process
is ai and 0 in the ON and OFF states of the Markov chain, respectively. Therefore, the source arrival is modeled as a
Markov-modulated Poisson process (MMPP).

1) Discrete-Time MMPP: We first consider the Poisson process whose intensity is controlled by a discrete-time Markov
chain, i.e., discrete-time MMPP. Assuming that the matrix Gi in (23) is the transition probability matrix of the Markov chain
for user i, the LMGF of the arrival process of the data for user i is given by Λai (θi) = ln

( gD-MP,i
2

)
, where gD-MP,i is given by

gD-MP,i = pi,11 +pi,22e
ai(eθ−1)+

√(
pi,11+pi,22eai(e

θ−1)
)2 − 4 (pi,11+pi,22−1) eai(eθ−1). Hence, the effective bandwidth is

given by aE,i =
Λai
θ . Similar to the derivation in Section IV-A from (25) to (29), we can obtain the FBL throughput of user i

with a discrete-time MMPP source as

µi =
Pon,i

M (eθi−1)
ln

(
eθiRi,E

(
eθiRi,E−pi,11

)
1−pi,11−pi,22+pi,22eθiRi,E

)
, (43)

where Pon,i is given in (24).
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geq,i(pave) = Ezi
{
e−θimri(1− εi) + εi

}
= Ezi

e
− θi

ln 2m

ln(1+
zipave

σ2
)−Ai

√√√√(1− 1

(1+
zipave
σ2

)
2

)
+ lnm

m


(1− εi) + εi

 . (45)

gsub,i (pi) = Ezi
{
e−θimri(1−εi)+εi

}
= e−θimri(1−εi)+εi = e

− θi
ln 2m

ln(1+
zipi
σ2

)−Ai

√√√√(1− 1

(1+
zipi
σ2

)
2

)
+lnm

m


(1−εi)+εi. (46)

2) Continuous-Time MMPP: If the intensity of Poisson process is controlled by a continuous-time Markov chain, we have
a continuous-time MMPP. Considering (37) as the transition probability matrix of the Markov chain, the LMGF of the arrival

process is [36] Λai(θi) = (eθi − 1)ai − (αi+βi)+

√
((eθi − 1)ai−(αi+βi))

2
+4αi(eθi − 1)ai. Following similar steps as in

the derivations in previous subsections, we can determine the FBL throughput of user i in the presence of a continuous-time
MMPP source as

µi =
Pon,iθi

M(eθi − 1)

(
θiRE,i + αi + βi
θiRE,i + αi

)
RE,i, (44)

where Pon,i = αi
αi+βi

is the probability of ON state.
So far in this subsection, we have discussed the FBL throughputs with discrete-time and continuous-time MMPP sources.

By comparing (44) with (39) and comparing (43) with (29), we immediately notice that the FBL throughput expressions for
discrete-time and continuous-time MMPP sources are scaled versions of the throughputs of discrete-time and continuous-time
Markov sources, respectively, scaled by θi

eθi−1
. These scaling differences do not alter the optimal power allocation problem,

i.e., the proposed optimal algorithms can be readily applied.

V. EQUAL POWER ALLOCATION AND SUB-OPTIMAL POWER ALLOCATION POLICIES

In the previous two sections, we analyzed the optimal power allocation strategy for downlink multiuser networks considering
constant-rate and random arrivals, and address how to optimally allocate the power over frames (time) and among users. In
this section, we discuss two additional approaches and study their performance in the FBL regime.

A. Equal power allocation

Under equal power allocation, each user in each frame is allocated a fixed power level of pave. Hence, the effective capacity
is given by Ri,E = − 1

θi
ln geq,i where geq,i with equal power allocation is given in (45). Substituting Ri,E or geq,i into (29), (39),

(43) and (44), we then can determine the FBL throughputs with random arrivals, which is given by (45) on the next page. It
should be mentioned that the above equal power allocation policy is not able to guarantee the reliability of users’ transmissions,
i.e., does not satisfy (17). Hence, it is not regarded as a sub-optimal power allocation policy.

B. Power allocation among users within a frame

In this subsection, we only allocate power among users within each frame, and not perform power allocation over frames
(i.e., over time). Therefore, we now consider an instantaneous or short-term power constraint, i.e., for each frame, we have∑N
i=1 pi−Mpave/m ≤ 0. In addition, the power allocation is subject to the current channel gain zi, i= 1, ..., N , while the

channel distributions are not taken into account. The objective is to maximize the sum of µ̂i which is not the actual FBL
throughput over time but the FBL throughput under the assumption of a static channel, i.e., this throughput formulation is
obtained assuming that the current channel gain zi applies to all frames. In this case, the effective capacity is Ri,E =−1

θi
ln gsub,i

where gsub,i with static zi is given by (46) on the next page. Based on gsub,i and Ri,E, we can easily express µ̂i for different
types of data arrivals.

In the following, we discuss the power allocation problem in the presence of a discrete Markov source, while the problem for
the other types of data arrivals can be solved similarly. For the discrete Markov source, µ̂i can be obtained by substituting (46)
into (33). Then, the problem of power allocation among users within a single frame is given by

max
p∈Ω

µsum =

N∑
i=1

µ̂i

s.t. :

N∑
i=1

pi −
Mpave

m
≤ 0,

(47)

where p = {p1, ..., pN} and Ω = {Ωi}N , where Ωi is the admissible set of pi, as defined in (17).
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Since the static channel fading model can be seen as a specific case of quasi-static channel model, it is easy to show that
Problem (47) is a convex problem. The Lagrange dual function is given by

L =

N∑
i=1

µ̂i − λ

{
N∑
i=1

pi −
Mpave

m

}
. (48)

Letting ∂L
∂pi

= 0, we have exactly the same equation in (36), with only a different expression for gi (which, in the sub-
optimal power allocation strategy, is denoted as gsub,i). Under these assumptions, to determine the power levels via numerical
computations, we propose the following algorithm described in Algorithm 2 below for this sub-optimal power allocation
strategy.

Algorithm 2 : Sub-Optimal Power Allocation Algorithm.
1) for user i = 1, ..., N

a) if zi < zmin

b) then p∗i = 0 and go to Step 1 for the next user;
c) else Given λ, determine pi according to (36) and (46).
We have p∗i = max{pi, γth,iσ

2

zi
}.

endif
endfor

2) Check if the sum of the obtained p∗i satisfy the average power constraint.
a) if not satisfied with equality
b) then update the value of λ and return to Step 1;
c) else the optimal power p∗i , i = 1, ..., N is obtained.

endif

Since gsub,i in the proposed suboptimal approach is fully decided by the choice of pi, Algorithm 2 has a relatively lower
complexity than Algorithm 1 in finding the power levels. However, the advantage of Algorithm 1 is that the optimal power
allocation is determined only once in the system initialization, and there is no need to perform a search for each frame. On the
other hand, Algorithm 2 has to perform this for each frame, which is an obvious disadvantage. In addition, as this sub-optimal
solution doesn’t consider the allocation of power over frames, it definitely has a lower performance than the optimal one.

VI. NUMERICAL RESULTS

In this section, we provide our numerical results. First the proposed optimal power allocation algorithm is compared with
suboptimal power allocation schemes. Subsequently, we move to a more general performance investigation of the considered
downlink network under the proposed algorithm. In all the numerical results, we consider the following parameterization.
First, we set unit average channel gain for all links, while assuming that all links experience independent and identically
distributed (i.i.d) Rayleigh quasi-static fading, i.e., fPDF(zi) = e−zi , i = 1, ..., N . Therefore, the joint PDF of all channels is
fPDF (z) = e−

∑N
1 zi . Secondly, the noise power and the average power constraint pave are set to 1 mW (0 dBm) and 50 mW

(17 dBm), respectively. In addition, we set zmin = 1
50 . Then, we have Pr{zi < 1

50} = 0.02, i.e., with probability 0.02 the
channel gain zi is worse than the bound zmin and we allocate zero power to user i. The blocklength for each user is set to
m = 300 symbols. Unless specified otherwise, the default setup for the number of users is two, and both users have the same
type of sources and the same QoS requirements. Finally, we consider both the constant-rate and random arrival models. In
particular, in the analysis of random arrivals, we mainly focus on the discrete-time Markov source especially when comparing
with constant arrivals. The continuous-time Markov, discrete-time MMPP and continuous-time MMPP sources will also be
addressed towards the end of the numerical results.

A. Comparison with sub-optimal algorithms

To start with, in this subsection we provide comparisons between the optimal algorithm (opt) versus the equal power
allocation (equ) and the power allocation within a frame (subopt) discussed in Section V. The comparison is with respect to
the normalized sum throughputs as a function of error probabilities and QoS exponents, respectively. In addition, both the
constant arrival model and the discrete-time Markov arrival model are taken into account.

We first vary the error probability and provide the results in Fig. 3. It can be observed that all normalized sum throughput
curves are concave in the users’ target error probability. In addition, the sub-optimal algorithm, which optimally allocates the
power among users within a frame, performs better than the equal power allocation for both the constant-rate data source
and the random data source. Moreover, the optimal algorithm, which optimally allocates power among users and over frames,
further improves the throughput performance in comparison to the sub-optimal algorithm. Furthermore, a higher throughput
level is achieved with the constant data source than with the random data source. In particular, a lower probability of the ON
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Fig. 3. Comparison between the proposed algorithms and the equal power allocation in a two-user scenario, while setting θ1= θ2=10−2 and varying the
error probability. Case 1 and Case 2 are with different setups of the state transition probability matrix of the discrete-time Markov data arrival, i.e., Case 1:
G={0.3, 0.7; 0.3, 0.7}, Pon=0.7; Case 2: G={0.5, 0.5; 0.5, 0.5}, Pon=0.5.
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Fig. 4. Comparison between the proposed algorithms and the equal power allocation in a two-user scenario, while setting ε1= ε2=10−2 and varying the
QoS exponent of the two users. Case 1 and Case 2 are with different setups of the state transition probability matrix of the discrete-time Markov data arrival
i.e., Case 1: G={0.3, 0.7; 0.3, 0.7}, Pon=0.7; Case 2: G={0.5, 0.5; 0.5, 0.5}, Pon=0.5.

state pon (indicating a more bursty source) leads to a lower sum throughput, as observed in Fig. 3 when the performances with
two different discrete Markov sources are compared.

We continue the comparison in Fig. 4 where the QoS exponent of users are varied. First, all the throughput curves are
decreasing in the QoS exponent θ. In particular, when θ is as small as 10−5, for each power allocation algorithm the throughput
performances with different source models converge to the same value. This is because a small θ indicates a loose QoS
requirement, which makes a link-layer QoS-constrained performance converge to the physical-layer performance that does not
depend on the source characteristics. Secondly, the optimal power allocation is observed to provide a higher throughput than
the two sub-optimal approaches. Finally, we have the same observation as in Fig. 3 that for each algorithm a lower pon results
in a lower sum throughput.

B. Evaluation

In Section VI-A, we show the performance advantage of the proposed optimal algorithm in comparison to two sub-optimal
algorithms, while also demonstrating the impact of error probability and QoS exponent on the throughput performance. In
this subsection, we continue investigating the throughput performance of the optimal algorithm under different setups, e.g., for
different values of the coding blocklength, and different number of users.

First, we study the impact of blocklength on the normalized sum throughput and provide the results in Fig. 5. In the figure,
both the constant source and discrete-time Markov source are considered for three different values of {θ, ε} pairs. When θ is
relatively large, the throughputs are decreasing in the blocklength. On the other hand, with a relatively small θ, the throughputs
are observed to be concave in the blocklength. In particular, by comparing the top two groups of curves we find that the
sharpness of the concavity is influenced by the error probability ε, e.g., curves with θ = 10−4, ε = 10−2 are relatively more
flat than the curves with θ = 10−4, ε = 10−4.

We also investigate the relationship between the throughput and the number of users in the system. In Fig. 6, we set m to
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Fig. 6. The relationship between user number (which linearly increase the frame length) and normalized sum throughput. In the figure, we set m = 300,
M = N ·m where N is the user number. Case 1: G = {0.3, 0.7; 0.3, 0.7}, Case 2: G = {0.5, 0.5; 0.5, 0.5}, Case 3: G = {0.7, 0.3; 0.7, 0.3}.

be fixed at 300 (symbols) and therefore the frame length increases linearly in the number of users N , i.e., M = Nm. We
find that the normalized sum throughputs decrease as the number of users grows. The reason is that as more users with fixed
transmission blocklength are to be served within the same frame, the system becomes less flexible, i.e., we have longer frame
durations and longer waiting time in the queue. This significantly strains the queue stability and increases the buffer violation
probability, thus, leading to a lower QoS-constrained throughput. We also consider a different simulation setup, where we fix
the frame length as M = 2000 (symbols) and let more and more users to share this frame duration, i.e., the blocklength of
each user’s transmission linearly decreases with the increasing number of users. The results are provided in Fig. 7, where both
the constant and discrete MMPP sources are considered. Interestingly, we find that the each throughput curve for this setup
initially increases as the number of users grows and levels off as the number of users sharing the same fixed frame duration
is further increased. The explanation for this is as follows. There is an underlying trade-off in this scenario, between the
FBL performance degradation due to shorter blocklength for each user versus the multiuser diversity in the power allocation.
When less users share the frame, each user has a relatively long blocklengh. In this case, increasing the multiuser diversity
significantly improves the normalized sum throughput via the power allocation. On the other hand, when the multiuser diversity
already achieves a certain level of performance, adding one or two users provides less gain but introduces more FBL loss due
to shorter coding blocklength. As a result, all the curves start leveling off when the number of users is relatively large. The
figure actually suggests the optimal size of the user group in a QoS-supporting network with finite blocklengths codes.

In Fig. 6 and Fig. 7, we show the throughput performance with discrete-time Markov and discrete-time MMPP sources. In
fact, the throughput with a Markov source is similar to the corresponding MMPP source. Recall that the throughput expressions
for discrete-time and continuous-time MMPP sources in (43) and (44) are exactly scaled by θ

eθ−1
with respect to the throughput

expressions for the corresponding Markov sources in (29) and (39). Note that θ
eθ−1

≤ 1, θ ≥ 0 since for f (θ) = eθ−1− θ we
have f (0) = 0 and f ′ (θ) = eθ − 1 ≥ 0,∀θ ≥ 0. Hence, the throughput gap between a Markov source and the corresponding
MMPP source increases with increasing θ. Conversely, if θ is not significantly large, the performance gap is small. An example
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Fig. 8. Throughputs of two-user network with Markov fluid source and continuous-time MMPP, while varying error probability of the two users.

is provided in Fig. 8, where θ is set to 0.025. The figure shows that the throughput curves of continuous-time Markov and
MMPP sources have similar shapes and small performance gaps exist for each setup of {α, β}. In addition, the figure shows
that a large β leads to a low throughput performance. This is due to the fact that as α is fixed, larger β leads to smaller Pon

(i.e., the source becomes more bursty) which leads to lower throughput.
In all the previous numerical results, we have considered homogeneous QoS requirements for all users, e.g., we assume that

the users have the same ε and θ and we vary these two factors for all users simultaneously. In the last figure, we discuss the
impact of varying the QoS requirements of a single user. We show the results in Fig. 9 where we consider a continuous-time
Markov model with different β values. There in total are five curves in the figure, which can be divided into two groups. The
curve at the bottom is a shared reference curve belonging to both groups. The curves denoted with blue ◦ are in the first group,
for which we fix the error probability as 10−2 and vary θ. By reducing θ1 from 10−2 to 10−3, the throughput improves by
approximately 0.6 bit/ch.use. In addition, the throughput is further increased by about 0.6 bit/ch.use by also reducing θ2 to
the same value. The second group contains three curves at the bottom of the figure, where we fix θ and vary ε. We observe a
similar result that the improvement by reducing ε2 from 10−2 to 10−3 is about half of improvement by reducing both ε1 and
ε2. In addition, we again find that all throughput curves are decreasing in β. Finally, by comparing the two groups it can be
seen that the impact of θ on the throughput performance is more significant than that of ε, matching with the results in Fig. 3
and Fig. 4.

VII. CONCLUSION

In this paper, we have investigated optimal power allocation strategies in a downlink multiuser URLLC network in quasi-
static fading channels when the data arrivals are modeled as constant-rate, discrete-time and continuous-time Markov processes,
and discrete-time and continuous-time MMPP. The normalized sum throughput is maximized in the presence of statistical QoS
constraints and FBL codes. First, we have developed the FBL throughput models. Subsequently, based on the model we
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Fig. 9. Throughputs of a two-user network, while varying β. α1 = α2 = 10, β1 = β2 = β. In the figure, the random-arrival is based on discrete-time
Markov source.

have formulated optimization problems and shown the convexity of the problem. Then, we solved the problem by proposing
optimal algorithms. In addition, the performances of two sub-optimal power allocation algorithms have also been analyzed and
compared with the optimal power allocation.

Via numerical analysis, first we have shown that the proposed algorithm outperforms both sub-optimal algorithms. We have
demonstrated that a higher throughput is achieved with a constant source than with a random data source, while for each
of the considered random data sources a more bursty source leads to a lower throughput. We have also observed that the
normalized sum throughputs are concave in the users’ error probability and are decreasing in the QoS exponent. Normalized
sum throughputs are also shown to be decreasing with increasing number of users when we fix the blocklength of transmission
for each user and increase the frame length with the number of users. On the other hand, if we fix the total frame length and
let more and more users share the frame, then the normalized sum throughputs increase as the number of users grow and level
off when the number of users is relatively large. We have also shown that the throughput gap between a Markov source and
the corresponding MMPP source is small when the QoS exponent is not significantly large. Finally, for the scenario with two
users where the QoS requirements are different, we have demonstrated that the influence by changing the QoS requirement of
one user is about half of influence by changing both. This indicates that the general observations based on the homogeneous
setup of users hold also for the heterogeneous users.
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