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Abstract— When transmitting over multiple-input-multiple-
output (MIMO) channels, in the case of total power constraints
and complete channel state information (CSI) the optimum power
distribution is obtained by water-filling the squared singular
values of the channel matrix H . In this paper, we consider the
case that nature behaves as an opponent to the optimum transmit
strategy in choosing the channel as bad as possible. Interpreting
the mutual information as payoff function for two players, the
transmitter and a malicious nature, this approach may be seen
as a two person zero sum game.

We first analyze maximum points of the payoff function
for a fixed channel matrix under general power restrictions
and characterize such points via directional derivatives. Worst
channel behavior must be separated from the zero channel where
no transmission is possible at all. Loewner semi-ordering of
nonnegative Hermitian matrices is employed to ensure minimum
channel quality. It is shown that a Nash equilibrium exists for
general power constraints. Concrete results are achieved for a
limited total power budget and limiting the maximum available
power for each subchannel.

I. INTRODUCTION

Multiple-input-multiple-output (MIMO) channels are an im-
portant means to improve the performance of wireless systems.
Recent seminal work in [1] and [2] has shown that the
use of multiple antennas at both ends significantly increases
the information-theoretic capacity far beyond that of single-
antenna systems in rich scattering propagation environments.

In this paper, we choose two complementary approaches to
describe the capacity of MIMO channels. First, we investigate
a scenario where the channel state is known. In case of
total power constraints at the transmitter, the capacity and
the associated optimum power strategy is characterized via
directional derivatives of the objective function. Using this
characterization the well known water filling solution, see [2],
[3], [4], can be easily verified as the optimum point. Analogous
results are obtained when the maximum power is bounded.
The optimum solution here is also characterized, and explicitly
determined, by directional derivatives.

Secondly, we consider the set of all channel matrices which
are bounded from below with respect to the Loewner semi-
ordering. The approach is embedded into a game theoretic
framework. A two-person zero sum game is considered where
the two players are the transmitter and a malicious nature. The
payoff function is the mutual information.

This setup has also been developed in [5]. The authors
[5] obtain a uniform power allocation as the solution of the
game under the assumption that channels are isotropically
unconstrained. This essentially means that any unitary trans-
formation of some channel matrix H , i.e., any other direction
of the subchannels, is also an option for nature to choose. We
generalize the approach in merely requiring convexity of the
set of power distributions and a lower bound for H∗H in the
Loewner semi-ordering to avoid the trivial zero solution.

Related minimax problems have been considered in [6] in
the framework of worst case analysis, and [7] for the case that
possible channels satisfy tr(H∗H) ≥ β.

This paper is organized as follows. We start by introduc-
ing the mathematical techniques used throughout the paper
in Section II. In Section III we present the system model
and investigate a MIMO channel under the assumption that
the channel state is known and fixed. The optimum power
strategy is characterized by directional derivatives of a concave
function. In the case of total power restrictions the well
known water filling solution is confirmed. Analogously, for
restrictions on the maximum power an explicit solution and
a dual characterization is given. We deal with the case of an
unknown channel state in Section IV. The underlying two-
person zero sum game is shown to have a saddle point. A
short summary and a discussion of future work is given in
Section V.

II. PRELIMINARIES

Let f be a real-valued concave function with convex domain
C and x̂, x ∈ C. The directional derivative of f at x̂ in the
direction of x is defined as

Df(x̂, x) = lim
α→0+

1
α

[
f
(
(1 − α)x̂ + αx

) − f(x̂)
]

=
d

dα
f
(
(1 − α)x̂ + αx

)∣∣∣
α=0+

,

(1)

see, e.g., [8]. Since f is concave,
(
f((1−α)x̂+αx)−f(x̂)

)
/α

is monotone increasing with decreasing α ≥ 0, and the
directional derivative always exists.

If C is a subset of a Hilbert space with inner product 〈·, ·〉,
it is well known that

Df(x̂, x) = 〈∇f(x̂), x − x̂〉, (2)
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Fig. 1. A MIMO channel

whenever ∇f , the derivative of f in the strong sense, exists.
Optimum points are characterized by directional derivatives as
follows, for a proof see [8].

Proposition 1: Let C be a convex set and f : C → R a
concave function. Then the maximum of f is attained at x̂ if
and only if Df(x̂, x) ≤ 0 for all x ∈ C.

In the following we make frequent use of the Loewner
semi-ordering on the set of nonnegative definite Hermitian
matrices, defined as A ≤ B if B−A is nonnegative definite.
For reference purposes we quote the following result due
to Loewner, see [9], A.1.b., p. 510. Let λ(1)(A) ≤ · · · ≤
λ(m)(A) denote the eigenvalues of some nonnegative definite
Hermitian matrix A in increasing order.

Proposition 2: If A ≤ B, then λ(i)(A) ≤ λ(i)(B) for all
i = 1, . . . , m.

III. EQUIVALENCE THEOREMS

We consider a MIMO transmission system with r receive
antennas and t transmit antennas. After appropriate renormal-
ization (see [10]) we obtain the channel model

Y = HX + Z

with some complex r × t matrix H and random noise
vector Z ∈ C

r. Z is circularly symmetric complex Gaussian
distributed (see [2]) with expectation 0 and covariance matrix
E(ZZ∗) = Ir, denoted by Z ∼ SCN(0, Ir). The complex
zero mean input vector X is subject to power constraints
described by

E(XX∗) = Q ∈ Q
for some set of nonnegative definite matrices Q.

By slightly extending the arguments in [2] the capacity of
a MIMO channel is derived as the maximum of the mutual
information over all admissible input distributions of X as

C = max
Q∈Q

I(X,Y ) = max
Q∈Q

log det(Ir + HQH∗).

We now characterize the covariance matrix Q̂ which
achieves capacity by using directional derivatives of the func-
tion

f : Q → R : Q 	→ log det(Ir + HQH∗).

From Ky Fan’s inequality it follows immediately that f is
concave whenever its domain Q is convex.

Proposition 3: Let Q be convex and Q̂, Q ∈ Q. The
directional derivative of f at Q̂ in the direction of Q is given
by

Df(Q̂,Q) = tr
[
H∗(Ir + HQ̂H∗)−1H (Q − Q̂)

]
. (3)

Proof: We exploit the chain rule for real valued functions
g(X) where the matrix X is itself a function of a scalar α,

dg

dα
= tr

[ dg

dX

(dX

dα

)∗]

Furthermore, we use the fact that d
dα det X =

(det X)(X−1)∗, cp. [11] or [12]. Hence,

d

dα
f(Q̂ + α(Q − Q̂))

=
d

dα
log det

(
Ir + HQ̂H∗ + αH(Q − Q̂)H∗)

= tr
[
(Ir + HQ̂H∗ + αH(Q − Q̂)H∗)−1H(Q − Q̂)H∗].

The value α = 0 and cyclically exchanging H∗ in the trace
yields representation (3)

From (2) and Proposition 3 we also conclude that the strong
derivative of f at Q̂ in the Hilbert space of all complex t× t
matrices endowed with the inner product 〈A,B〉 = trAB∗,
see [13], p. 286, amounts to

∇f(Q̂) = H∗(Ir + HQ̂H∗)−1H.

According to Proposition 1 the point Q̂ maximizes f(Q)
over some convex set Q iff Df(Q̂,Q) ≤ 0 for all Q ∈ Q.
By (3) this leads to

tr
[
H∗(Ir + HQ̂H∗)−1H Q

]

≤ tr
[
H∗(Ir + HQ̂H∗)−1H Q̂

]

for all Q ∈ Q. Hence, we obtain the following proposition.

Proposition 4: maxQ∈Q f(Q) is attained at Q̂ if and only
if Q̂ is a solution of

max
Q∈Q

tr
[
H∗(Ir + HQ̂H∗)−1H Q

]
. (4)

The main value of this equivalence is that once a candidate
for maximizing f(Q) over Q, hence achieving capacity, is
claimed it can be verified by checking a merely linear condi-
tion. Moreover, in concrete cases nice characterizations of the
optimum are obtained, as is developed in the following.

A. Total Power Constraint

We first investigate total power constraints

Qtot = {Q ≥ 0 | tr Q ≤ L}.
Obviously, the set Qtot is convex. Covariance matrices Q
which achieve capacity, i.e., solutions of

max
tr Q≤L

log det(Ir + HQH∗) (5)



are now characterized as follows.

Proposition 5: Q̂ is a solution of (5) iff

λmax

(
H∗(Ir + HQ̂H∗)−1H

)

=
r

L
− 1

L
tr(Ir + HQ̂H∗)−1

(6)

Proof: We start from equation (4) and first note that
{xx∗ ≥ 0 | x∗x = L} is the set of extreme points of Qtot.
As at least one optimal solution is attained at an extreme point
it follows that

max
tr Q≤L

tr
[
H∗(Ir + HQ̂H∗)−1H Q

]

= max
x∗x=L

tr
[
H∗(Ir + HQ̂H∗)−1H xx∗]

= max
x∗x=L

x∗H∗(Ir + HQ̂H∗)−1H x

= Lλmax

(
H∗(Ir + HQ̂H∗)−1H

)
,

(7)

where we used Fischer’s minmax representation, λmax(A) =
maxx∗x=1 x∗Ax, in the last equation and where λmax(A)
denotes the maximum eigenvalue of the matrix A.

Further, using the identity (I + A)−1A = I − (I + A)−1

we conclude

tr
[
H∗(Ir + HQ̂H∗)−1HQ̂

]

= tr
[
(Ir + HQ̂H∗)−1HQ̂H∗]

= tr
[
Ir − (Ir + HQ̂H∗)−1

]

= r − tr (Ir + HQ̂H∗)−1.

(8)

Dividing the right hand side of (7) and (8) by L completes
the proof.

It is easy to see that the well known water filling solution

Q̂wf = V diag(ν − γ−1
i )+V ∗

actually satisfies condition (6). Here ν is defined by wa-
ter filling the inverse positive eigenvalues γi of H∗H as∑

i:γi>0

(
ν − γ−1

i )+ = L.
Using the singular value decomposition H = UΓ 1/2V ∗

and the optimal solution Q̂wf it is straightforward to show
that

λmax

(
H∗(Ir + HQ̂H∗)−1H

)
=

1
ν

.

On the other hand, using the same decomposition some algebra
gives

tr
(
Ir − (Ir + hQ̂wfH

∗)−1
)

=
L

ν
,

which verifies (6).

B. Maximum Eigenvalue Constraint

An analogous characterization can be derived if the maxi-
mum eigenvalue is bounded by some constant L as

Qmax =
{
Q ≥ 0 | λmax(Q) ≤ L

}
.

Physically this means to constrain the maximum transmit
power across antennas.

From Fischer’s minmax representation λmax(A) =
maxx∗x=1 x∗Ax, cf. [9], p. 510, it follows that the set Qmax

is convex. We aim at determining the solution of

max
λmax(Q)≤L

log det
(
Ir + HQH∗). (9)

First an explicit solution of (9) is determined, subsequently
we give a nice characterization of the optimum point, dual to
Propositon 5.

Proposition 6: The maximum in (9) is attained at Q̂ = LIt

with value
∑r

i=1 log(1+Lγi), where γi, i = 1, . . . , r, denote
the eigenvalues of H∗H .

Proof: Let H = UΓ 1/2V ∗ denote the singular value
decomposition of H . Setting Q̂ = LIt maximization problem
(4) may be rewritten as

max
λmax(Q)≤L

tr
[
H∗(Ir + HQ̂H∗)−1H Q

]

= max
λmax(Q)≤L

tr
[
V diag(γi/(1 + Lγi)

)
V ∗Q

]

= max
λmax(Q)≤L

tr
[
diag(γi/(1 + Lγi)

)
V ∗QV

]

= max
λmax(Q)≤L

tr
[
diag(γi/(1 + Lγi)

)
Q

]

≤
r∑

i=1

Lγi

1 + Lγi
,

where trAB ≤ ∑
λ(i)(A)λ(i)(B) for the ordered eigenval-

ues of nonnegative definite Hermitian matrices A and B is
exploited in the last line, see [9], H.1.g, p.248. Equality holds
if Q = LIt, which proves optimality of Q̂ = LIt. Using
again the singular value decomposition of H we get

log det(Ir + HQ̂H∗) = log det(Ir + LΓ )

=
r∑

i=1

log(1 + Lγi)

which completes the proof.

In a nice duality to Proposition 5, exchanging maximum
eigenvalue and trace and keeping the right hand side unaltered,
the following holds.

Proposition 7: Q̂ is a solution of (9) iff

tr
(
H∗(Ir + HQ̂H∗)−1H

)

=
r

L
− 1

L
tr(Ir + HQ̂H∗)−1.

(10)

Proof: Again we use the inequality trAB ≤∑
λ(i)(A)λ(i)(B). for nonnegative definite Hermitian matri-

ces A, B. Applying this inequality to (4) gives

max
λmax(Q)≤L

tr
[
H∗(Ir + HQ̂H∗)−1H Q

]

= L

r∑
i=1

λi

(
H∗(Ir + HQ̂H∗)−1H

)

= L tr
(
H∗(Ir + HQ̂H∗)−1H

)
.



According to (8), the maximum value of (4) is attained at Q̂
with value

r − tr (Ir + HQ̂H∗)−1.

Dividing both sides by L concludes the proof.

Optimality of Q̂ = LIt can now also be verified from (10).
We start from the left hand side and conclude

1
L

tr
(
LH∗(Ir + LHH∗)−1H

)

=
1
L

tr
(
Ir − (Ir + LHH∗)−1

)

=
1
L

(
r − tr(Ir + LHH∗)−1

)
,

which is the right hand side of (10).

IV. MINIMAX AND MAXIMIN: THE WORST CASE

CHANNEL

In Section III the optimum power strategy Q̂ of the transmit-
ter is characterized by directional derivatives of the function
log det(Ir + HQH∗) when the channel state is known and
fixed. If total power restrictions tr Q ≤ L apply the well
known water filling solution is approved, while Q = LIt is
the optimum strategy when maximum power is limited.

We now discuss that the channel behaves as an opponent
against the optimal strategy of the transmitter. This approach
has a game theoretic interpretation as a two person zero
sum game where nature is playing against the transmitter as
is thoroughly investigated in [5]. Bounds on the malicious
behaviour are necessary because otherwise the channel would
choose transmission matrix H = 0 resulting in zero capacity
with no transmission possible at all. Lower channel bounds on
the channel matrix H are formalized by using the Loewner
semi-ordering as

H∗H ≥ B (11)

with a given nonnegative definite matrix B. This is a very
general approach covering a number of semi-orderings. It
particularly implies minimum channel eigenvalue and general
individual channel eigenvalue constraints as considered in [5]
by choosing B a diagonal matrix with decreasingly ordered
elements

B = diag
(
b(1), . . . , b(r)

)
,

since from (11) and Proposotion 2 it follows that

λ(i)(HH∗) ≥ b(i).

A. Transmitter moves first

The worst case move of nature against the optimal trans-
mitter policy is described by

min
H∗H≥B

max
Q∈Q

log det
(
Ir + HQH∗) (12)

It turns out that the worst case channel is attained at
H∗H = B against any optimal strategy Q̂ ∈ Q of the inner
maximization problem. This is intuitively clear, however, a
formal proof needs intriguingly deep results.

For any two complex nonnegative matrices A ≤ B it holds
that

det A ≤ detB,

see [9], p. 463. This monotonicity easily carries over to

log det
(
Ir + HQH∗) = log det

(
Ir + QH∗H

)

≥ log det
(
Ir + QB

)

for all Q ∈ Q and H∗H ≥ B. Hence,

max
Q∈Q

log det
(
Ir + QH∗H

) ≥ max
Q∈Q

log det
(
Ir + QB

)

for all H∗H ≥ B, and finally

min
H∗H≥B

max
Q∈Q

log det
(
Ir + QH∗H

)

≥ max
Q∈Q

log det
(
Ir + QB

) (13)

such that the minimum is attained at H∗H = B, the worst
nature can do. We hence have proved the following.

Proposition 8: If H∗H ≥ B, for any set of transmitter
strategies Q the worst channel behavior against the optimum
transmitter strategy is attained at the lower bound B, i.e., (13)
holds.

B. Nature moves first

If nature always chooses the worst channel against any
power distribution Q ∈ Q we are faced with the reversed
problem

max
Q∈Q

min
H∗H≥B

log det
(
Ir + QH∗H

)
. (14)

Using the same arguments as above yields

min
H∗H≥B

log det
(
Ir + QH∗H

)
= log det

(
Ir + QB

)

such that (14) simplifies to

max
Q∈Q

min
H∗H≥B

log det
(
Ir + QH∗H

)

= max
Q∈Q

log det
(
Ir + QB

)
.

(15)

Hence, both the minimax problem (13) and maximin prob-
lem (15) have the same value. From a game theoretic point
of view there exists a Nash equilibrium, a saddlepoint of the
function log det(Ir + HQH∗), and the value of the game is
given by

max
Q∈Q

log det
(
Ir + QB

)
. (16)

If Q = Qtot, i.e., tr Q ≤ L, the value of the game (16) is
attained at Q̂ where the eigenvectors of Q̂ are aligned to the
eigenvectors of B and the eigenvalues water-fill those of B.

In the case of maximum power constraints by λmax(Q) ≤ L
the maximum of (16) is attained at Q̂ = LIt. Propositions 5
and 7 provide characterizations of both solutions, respectively.

We conclude with a numerical example. In Figure 2,
log det(Ir + HQH∗) is plotted as a function of the signal-
to-noise ratio SNR = tL for different channel matrices H
and different covariance matrices Q and for r = t = 4.
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Fig. 2.

log det(Ir + HQH∗) for different pairs (HH∗,Q) as a
function of SNR = tL.

The lower two curves correspond to the worst channel, i.e.
to HH∗ = B = diag(10, 8, 6, 4), where the solid line
represents the solution to the maximin-problem treated in this
section. We consider a second, arbitrary channel defined by
HH∗ = 10 · B and the two covariance matrices Q1 = L · I
and Q2 = L · diag(0.5, 0.2, 0.2, 0.1). As expected, the curve
belonging to the covariance matrix L · I is always the best.

V. CONCLUSION

The central methodology in this paper are directional deriva-
tives of the mutual information in MIMO channels. Hereby,
optimum power distributions for complete channel state in-
formation are generally characterized. This result is used to
explicitly derive the capacity in the case of total and maximum
power constraints, the first of which recovers the well known
water filling solution. Furthermore, capacity is investigated
when nature behaves as an opponent to the optimum strategy
in always deteriorating the channel to a given lower bound.
This approach can be interpreted as a two person zero sum
game. It turns out that an equilibrium point exists whenever
the worst case channel is bounded from below.

Future work will be devoted to determining optimum power
distributions for general power constraints, e.g., by �p-Norms,
p ≥ 1. The extreme cases p = 1 and p = ∞ are treated in
the present paper. We will moreover investigate other lower
bounds on the minimum guaranteed channel quality and the
uniqueness of corresponding solutions.

ACKNOWLEDGMENT

This work was supported by DFG grant Ma 1184/11-3.

REFERENCES

[1] G. J. Foschini and M. J. Gans, “On limits of wireless communication in
a fading environment when using multiple antennas,” Wireless Personal
Communications, vol. 6, pp. 311–335, 1998.

[2] I. E. Telatar, “Capacity of multi-antenna gaussian channels,” European
Transactions on Telecommuncations, vol. 10, no. 6, pp. 585–595, 1999.

[3] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Whiley, 1991.

[4] R. G. Gallager, Information Theory and Reliable Communications. New
York: John Wiley & Sons Ltd., 1968.

[5] D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Uniform power
allocation in MIMO channels: A game-theoretic approach,” IEEE Trans.
Inform. Theory, vol. 49, no. 7, pp. 1707–1727, 2003.

[6] S. Verdu and V. Poor, “On minimax robustness: a general approach and
applications,” IEEE Transactions on Information Theory, vol. 30, pp.
328–340, 1984.

[7] N. Chiurtu, B. Rimoldi, and E. Telatar, “On the capacity of multi-antenna
Gaussian channels,” in Proceedings IEEE International Symposium on
Information Theory, ISIT 2001, Washington DC, June 2001, p. 53.

[8] P. Whittle, “Some general points in the theory of optimal experimental
design,” J. Roy. Statist. Soc. B, vol. 35, pp. 123–130, 1973.

[9] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and
Its Applications. New York: Academic Press, 1979.

[10] E. Biglieri and G. Taricco, Transmission and Reception with Multiple
Antennas: Theoretical Foundations. Delft: now Publishers, 2004.

[11] J. R. Magnus and H. Neudecker, Matrix Differential Calculus with
Applications in Statistics and Econometrics. New York: John Wiley &
Sons Ltd., 1988.

[12] K. Petersen and M. Pedersen, The Matrix Cookbook.
http://2302.dk/uni/matrixcookbook.html, 2005.

[13] C. D. Meyer, Matrix Analysis and Applied Linear Algebra. Philadel-
phia: SIAM, 2000.


	Select a link below
	Return to Main Menu
	Return to Previous View




