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Abstract: In contrast to cable-bound connections, the wireless channel is an unreliable medium. 
Moreover, in distributed control, where multiple agents interact, a low latency in communication is 
important for a fast convergence of the distributed control algorithms.  
In this chapter, we present a tutorial of the theory of consensus in multi-agent systems targeting wireless 
cyber-physical systems. Particularly, we address communication engineers. Additionally, we present how 
consensus can be achieved with a given communication topology and we discuss how a limited 
communication capacity on different communication links influences the consensus of such cyber-
physical systems. As the quality of the wireless channel strongly influences the convergence of distributed 
control algorithms, we also present medium access control layer scheduling algorithms to reduce the 
latency and increase robustness in case of weak channel conditions.  

1 Introduction  
 
Distributed control and consensus are popular concepts in cyber-physical systems (CPS). Such systems 
can be further seen as a system of systems with multiple agents. An agent is here an independent sub-
system (e.g., a robot). All agents work together to achieve a global utility.  A typical application of a multi-
agent system is depicted in Figure 1. This figure shows four unmanned flying vehicles (quadro-copters) 
communicating over wireless communication channels. The global goal is to reach a specific formation. 
This can be achieved, e.g., by an individual position and velocity estimate of each agent. The velocity and 
the current position are the states of each agent. To keep the formation of the entire group, each agent 
has to communicate its current state to its neighbors. 
  

 
Figure 1: Example of a multi-agent system. Formation control is a typical application where consensus is 
of central importance, [Li 2015]. 

The consensus problem depends on the communication topology of the underlying multi-agent system. 
The topology is typically described by a so-called communication graph. In this graph, each vertex 
corresponds to an agent and each edge corresponds to a communication link. In this chapter, the 
communication link is considered to be a wireless channel and, therefore, may not always provide reliable 
communication. In control technology, a reliable communication with low latency is a fundamental 
requirement of a control system. In this chapter, we will give a tutorial on consensus of multi-agent 



systems. We study the consensus problem with wireless communication links and we investigate the 
influence of wireless communication parameters, such as signal-to-noise ratio (SNR) and channel fading 
on convergence of the system. Additionally, we observe, that latency is not only influenced by the 
mathematical consensus itself, it is also influenced by the communication model.  
The chapter is organized as follows. In Section 2, we present an introduction to wireless channel models 
for cyber-physical systems. In Section 3.1, we present the main findings in this field which are relevant for 
multi-agent systems. Multi-agent systems can be categorized in static networks without changes of the 
topology and networks with the switching topology. In Section 3.2, we present the fundamentals of 
communication protocols for static networks. These fundamentals are required to understand networks 
with switching topologies which are presented in Section 3.3. In Sections 4 and 5, we present new ideas 
for adaptive quantization for rate limited cyber-physical systems. 
 

2 Communication Channel of Multi-Agent Systems  
 
The communication between agents constitutes an important part of the distributed control mechanism 
required for CPS. Conventionally, the communication network that enables agents to interact (and hence 
enable information exchange) is modeled as a graph [Godsil 2001]. Thereby, both directed and 
undirected graphs are frequently utilized. Due to a possible asymmetry in the wireless links considering 
uplink and downlink communication channels, a directed graph is more realistic to model a wireless CPS.  
A directed graph 𝒢 is defined by its vertices and edges, (𝒱, ℰ). The elements of the nonempty vertex set 
𝒱 = {𝓋*, … , 𝓋,} represent the agents. A total number of n agents is considered. An edge, (𝓋/, 𝓋0), for any 
𝓋/, 𝓋0 ∈ 𝒱, represents the information exchange between two vertices, 𝓋/ and 𝓋0, if the corresponding 
agents can physically communicate. The edge set, ℰ ⊆ 𝒱×𝒱, is an ordered set of pairs of nodes. Self 
loops, (𝓋/, 𝓋/), are frequently excluded. If (𝓋/, 𝓋0) ∈ ℰ, 𝓋0 is a neighbor of 𝓋/. The set of neighbors of the 
agent 𝓋/, 𝒩/, and the cardinality of the 𝒩/ is called the degree of 𝓋/.  A vertex is referred to as an isolated 
vertex if its neighbor set is empty. A weighted graph is defined as 𝒢 = (𝒱, ℰ, A). Here, A = [a/0] ∈ ℝ,×, is 
the weighted adjacency matrix of 𝒢. In a weighted graph, a weight is associated with every edge and 
represents the associated cost of the edge. 

A path on 𝒢 is defined as a finite sequence of edges which connect a sequence of vertices. When there is 
an edge from every vertex to every other vertex, the corresponding directed graph is complete. The 
graph 𝒢 defines the topology of the communication network. The frequently used error-free transmission 
and fixed topology assumptions [Xiao 2005], [Ahlswede 2000], [Ngai 2004] are valid wired networks. 
However, these assumptions are overly simplistic for wireless networks. 

In wireless networks, the information exchanges among vertices take place over the air. Due to the 
unguided transmission environment, the transmitted information signals are subject to the impairments of 
the wireless communication channel, and these impairments are modeled using three main components; 
the path loss, the small-scale fading (or multi-path fading) and the large-scale fading (or shadowing). The 
path loss corresponds to the change in the average received power level related to the distance between 
the two vertices. The small scale fading g/0 results from the multi-path channel between the neighbor 
vertices and represents rapid fluctuations in the received signal’s quality. Finally, as the third factor, the 
large scale fading represents the variations in the local mean received power. These three factors 
significantly affect the transmission quality, and causes non-negligible error rates when transmitting 
information through an edge. Furthermore, the adjacency matrix becomes time varying due to the 
dynamic topology due to the impacts of the wireless communication channel. Consequently, with 
wireless channels the topology of the CPS changes rapidly [Bai 2008], [Bai 2001] which can be modeled 
by a communication graph with 𝒢; = (𝒱, ℰ, 	
  𝐀;) with a switching signal k = f(t). 

3 Consensus Control  
 
In this section, we will present an overview of the mathematical fundamentals of consensus control. 
Consensus of a multi-agent system means the agreement of a common state of all agents and is mainly 
based on the topology of the communication network. The communication topology is mathematically 
described with so-called communication graphs. The mathematical theory to quantify the communication 
abilities of such multi-agent systems is based on algebraic graph theory.  



 
3.1 Fundamentals of Algebraic Graph Theory 
The fundamentals of algebraic graph theory were already developed in the early 1970s [Fiedler 1973]. 
Fiedler investigated the algebraic connectivity of graphs. Its seminal work is later used in the field of 
distributed control theory for multi-agent systems where communication graphs are used to model the 
communication among multiple agents. Fiedler’s work is only valid for bidirectional communication which 
corresponds to undirected communication networks. In this case, it can be proved that a connected 
multi-agent system can achieve average-consensus. This is not given in case of directed graphs [Murray 
2007]. Then, average consensus is only possible if the communication graphs are balanced.   
 
Graph 1  Graph 2 Graph 3 
undirected graph directed graph and 

strongly connected 
balanced directed graph 

   

L(𝒢) =

2 0 −1 −1
0 1 0 −1
−1 0 1 0
−1 −1 0 2

   L(𝒢) =

1 −1 0 0
0 1 0 −1
−1 −1 2 0
−1 −1 −1 3

 𝐋(𝒢) =

2 −1 0 −1
0 2 −1 −1
−1 −1 2 0
−1 0 −1 2

 

              
Figure 2: Example for different types of connected multi-agent systems. 

A typical example to understand algebraic graph theory is depicted in Figure 2. The figure presents three 
graphs with four nodes. We will use this example to explain the theory of this chapter. Each node or 
vertex 𝓋/ in the graph has an index i ∈ ℐ, where ℐ = {1, . . n} denotes the set of all indices which 
corresponds to the set of indices of all agents. Assuming all weights are a/0 ∈ 0,1  have discrete values, 
the communication graph can be formally defined by the following three definitions [Fiedler 1973]:  
Definition 1: Consider a 𝒢 = (𝒱, ℰ, 𝑨) with 𝑛 nodes. An edge 𝑒NO has a non-zero weight 𝑎NO if the nodes 
with index 𝑖 and  𝑗 are connected and 𝑖 ≠ 𝑗, otherwise it has the weight  𝑎NO = 0 where 𝑖, 𝑗 ∈ ℐ  
Definition 2: The adjacency matrix 𝑨, is 𝑨 NO = 𝑎NO, which denotes the weight of the edge from 𝑗 to 𝑖. 
Definition 3: The degree matrix 𝑫 is a diagonal matrix with  𝑫 NN = 𝑑NN = 𝑎NOOVN .  
In Graph 1 of Figure 2, the weight of the edge between Node 1 and Node 3  is given a*W = aW* = 1 and 
the weight of the edge between Node 1 and Node 2  is given a*X = aX* = 0. Based on the definition of 
the graph, the so called Laplacian matrix can be associated with this graph [Fiedler 1973]: 
Definition 4: The Laplacian matrix 𝑳(𝒢) ∈ ℝZ×Z associated with 𝒢 = (𝒱, ℰ, 𝑨) is  𝑳 𝒢 = 𝑫 − 𝑨. 
The Laplacian matrix is essential to consensus control. An important parameter of this matrix is the set of 
eigenvalues. The matrix 𝐋(𝒢) of an undirected graph is symmetric and positive semi-definite, therefore, 
also all eigenvalues are real non-negative. The second smallest eigenvalue λX	
  of the Laplacian matrix is 
called the algebraic connectivity of the graph and is often called Fiedler eigenvalue. In case of undirected 
graphs, the second smallest eigenvalue is larger in case of highly connected graphs compared to sparse 
graphs [Olfati-Saber 2004]. We will consider this property later in Section 3.3 when we discuss the 
convergence rate of consensus with switching topologies. Furthermore, it can be proved that in the case 
of directed graphs the real part of the eigenvalues is non-negative, which follows directly from the 
following theorem. 
Theorem 1: [Olfati-Saber 2004, Theorem 1] Let 𝜂(𝒢) the maximum node degree of a directed 
communication graph with 𝒢 = (𝒱, ℰ, 𝐴), then all eigenvalues of 𝐿 𝒢  are within the following set: 

D 𝒢 = z ∈ ℂ:	
   z − η(𝒢) ≤ η(𝒢)  ( 1 ) 

The set of possible locations of the complex eigenvalues is depicted in Figure 3. 
Due to the construction of the Laplacian matrix we have zero row sums, 𝑙NOO = 0, hence, 𝑳 𝒢 𝟏 = 𝟎 
which implies that there is at least one eigenvalue 𝜆* = 0. 
All other eigenvalues of the symmetric Laplacian matrix satisfy: 0 = λ* ≤ λX ≤ ⋯ ≤ λ,. 
 



 
Figure 3: Complex plane where all eigenvalues of 𝑳 𝒢  are located 

The following graph definitions are important to understand the main theorems for consensus in multi-
agent systems. In directed communication graphs, consensus is mainly associated with balanced and 
strongly connected graphs. 
Definition 5: [West 2001] [Wolfram] A strongly connected digraph is a graph in which it is possible to 
reach any node starting from any other node by traversing edges in the direction(s) in which they point.  
In the example of Figure 2, the Graph 1, 2, 3 are strongly connected,  
Definition 6 : A graph is balanced if  𝑎NO = 𝑎ONOO  for all 𝑖 ∈ ℐ. 
From our example of Figure 2, we can see that Graph 1 and Graph 3 are balanced and we can also 
observe that undirected graphs are always balanced.  
Proposition 1: [Oifati-Saber 2004, Theorem 1]. If 𝒢 = (𝒱, ℰ, 𝑨) is strongly connected, then, 
 𝑟𝑎𝑛𝑘 	
  𝑳 𝒢 = 𝑛 − 1. 
The following condition associated with a spanning tree. Note that, a strongly connect graph has a 
spanning tree. 
Definition 7 : A spanning tree of graph is a tree which contains all nodes of the graph. 
Proposition 2: e.g. [Ren 2008] Zero is a simple eigenvalue of 𝑳 𝒢  if and only if the communication graph 
𝒢 = (𝒱, ℰ, 𝑨) has a directed spanning tree. 
Later in Section 3.2, we will see that the spanning tree inside a communication graph is an important 
property for consensus in multi-agent systems.  
For further details of algebraic graph theory we refer to the seminal works of Fiedler [Fiedler 1979] and Wu 
[Wu 2005]. Fiedler contributed to this theory for weights a/0 ∈ 0,1 . The theory also holds for generalized 
non-negative real valued a/0 ∈ ℝl. 
 
3.2 Consensus with Time-Invariant Topologies 
In a multi-agent system, each node has individual states denoted by the state x/(t) ∈ ℝ. In this section, 
we will consider only scalar states. A generalization to multi-dimensional state vectors is presented in [Li, 
2010] [Li, 2015]. 
Roughly speaking: The nodes of a multi-agent network are said to reach consensus if 𝑥N = 𝑥O for all 
nodes 𝑖, 𝑗 ∈ ℐ, [Olfati-Saber 2004]. For example: The communication of the Graph 2 in Figure 2 is as 
follows: In each time instant 𝑡, Node 1 forwards its state 𝑥*(𝑡) to Node 4 and 3 and Node 4 forwards its 
states 𝑥p 𝑡  to Node 2. If for 𝑡 → ∞:  𝑥* 𝑡 = 𝑥X 𝑡 = 𝑥W 𝑡 = 𝑥p(𝑡), we have consensus.    
The system node in the scalar case is simply:  

x/ t = u/(t). ( 2 ) 

A protocol per agent achieving consensus in specific cases is given by: 

u/(t) = a/0(x0 − x/)
0

. ( 3 ) 

 
The protocol can be presented with the Laplacian in the compact notation: 

𝐱 t = −𝐋 𝒢 ∙ 𝐱 t  ( 4 ) 

with 𝐱 t = x* t , … , x,(t) v.  A formal definition of consensus is presented in [Olfati-Saber 2004]: 



Definition 8: [Olfati-Saber 2004] Let 𝒳:ℝZ → ℝ, we say a protocol solves the 𝒳-consensus problem if 
and only if there exists an asymptotically stable equilibrium 𝒙∗satisfying 𝑥N∗ = 𝒳(𝒙 0 ). 
Intuitively, consensus is reached if every stationary point satisfies 𝐱 t = 𝟎. We have 𝐱 t = 𝟎 if, e.g., 
𝐱 t = 𝟏.The condition of 𝐋 𝒢 𝟏 = 𝟎 of the Laplacian matrix implies that x/,

/z* (t) = 0 holds at 
consensus [Spanos 2005]. If consensus is achieved, we have 𝐱(t) = α ∙ 𝟏, therefore, we have  

𝐱 t = −𝐋 𝒢 ∙ 𝐱 t = −𝐋 𝒢 ∙ 𝟏 ∙ α = 𝟎. ( 5 ) 

Theorem 2: [Bread 2003] The multi-agent network with protocol ( 4 ) achieves consensus if and only if the 
associated communication graph 𝒢 = (𝒱, ℰ, 𝑨) has a spanning tree. 
Hence, consensus is related to the existence of a spanning tree inside the communication graph. 
If the communication graph is strongly connected, 𝐋 𝒢  has a simple zero eigenvalue, then due to the 
property of Theorem 1, −𝐋 𝒢  has eigenvalues with non-positive real parts, therefore, the linear system    
( 4 ) is stable. 
A special consensus case is the average-consensus which is defined by 𝒳 𝐱 = 1 n x/,

/z* (0). Hence, in 
average-consensus the states converge to the average value of the initial states. 
The main result concerning average-consensus in the literature is presented in the seminal work of [Olfati-
Saber 2004]. The authors showed that average-consensus of a multi-agent system is given if the directed 
graph is strongly connected and if it is balanced [Ren, 2007]. In this case, 𝟏 is the left eigenvector 
associated with the zero eigenvalue. Olfati-Saber et al. [Olfati-Saber 2004] proved:  
Theorem 3: A strongly connected multi-agent network 𝒢 = (𝒱, ℰ, 𝑨) with protocol ( 4 ) achieves average-
consensus if and only if 𝟏𝑻𝑳 𝒢 = 𝟎.  
In addition, the following holds also true: 
Theorem 4: [Olfati-Saber 2004] 𝒢 = (𝒱, ℰ, 𝑨) is balanced ⟺ 𝟏𝑻𝑳 𝒢 = 𝟎 ⟺ 𝑥NZ

Nz* (𝑡) = 0.   
 
3.3 Consensus with Switching Topologies 
In practice, static topologies are not always feasible. Especially, in wirelessly linked CPS, effects like, 
path-loss, shadow-fading, and multi-path fading will result in disconnected links within the 
communication graph.  
In specific low fading wireless channels, where no spanning tree exists in the communication graph, 
consensus is not possible. The consensus protocol of dynamic networks with switching topologies is 
similar to the consensus protocol for static multi-agent networks. The only difference is that the 
communication graph 𝒢; = (𝒱, ℰ, 	
  𝐀;) has a time-variant adjacency matrix 	
  𝐀; with k = f(t) where within 
a fixed time interval, f(t) switches finitely many times. The function f:	
  ℝl ⟶ 1,… , K  is a switching signal 
which indicates the changed topology of the communication graph. Let t�, t*, … be a time sequence 
where f(t) switches. The function f(t) is a piecewise continuous function. The new protocol is, therefore, 
[Olfati-Saber 2004]: 

𝐱 t = −𝐋 𝒢; ∙ 𝐱 t . ( 6 ) 

In case of static, strongly connected and balanced digraphs, average-consensus can be achieved. 
However, for arbitrary digraphs consensus is not always achievable.  
Ren et al. [Ren, 2005] proved a similar relation between consensus and the spanning tree within the 
communication graphs as in the static case presented in Theorem 2. They used a union of directed 
graphs defined and proved that consensus can will be achieved asymptotically if union of graphs has a 
spanning tree.  
Olfati-Saber et al. proved average-consensus for multi-agent systems with switching topologies. They 
used a disagreement value to prove their main result. This mathematical tool is also used in our 
contribution in Section 4. In case of an agreement (consensus), we have 𝐱 = α ∙ 𝟏. Therefore, we can 
define our disagreement state as follows [Olfati-Saber 2004]: 

𝐱 = α ∙ 𝟏 + 𝛅, ( 7 ) 

where 𝛅 denotes the disagreement vector. Based on the definition in ( 7 ), we can also define the state 
space representation of the disagreement vector (disagreement dynamics) 

𝛅 = −𝐋 𝒢; ∙ 𝛅. ( 8 ) 



4 Interaction of Control Theory and Information Theory 
 
The interaction between control theory (consensus) and information theory is an important research field 
for the understanding of CPS. Due to limited data rate on communication links between two nodes, or 
unreliable communication links, the theory of static consensus as presented in Section 3 must be 
extended.   
In the literature, disturbed states or measurements are often considered in the field of sensor networks 
[Xiao 2005], [Xiao 2007] or in consensus control with quantized states [Carli 2008], [Frasca 2000]: 

u/ t = a/0 Q(x0) − Q(x/)
0

. ( 9 ) 

The function Q(x0) denotes the quantized state. In [Dimarogonas 2010], [Guo 2013], the authors 
investigated a quantization protocol where the difference itself is quantized: 

u/ t = a/0Q x0 − x/
0

. ( 10 ) 

The authors of [Dimarogonas 2010] proved that the states converge to a ball with a bounded radius in 
case of a uniform quantization and the states converge to an equilibrium in case of logarithmic 
quantization. The authors of [Bauso 2009] considered disturbed measures Q(x0) only for the node j. 
Hence, they consider the following protocol: 

u/ t = a/0 Q(x0) − x/
0

. ( 11 ) 

Note that Q is in [Bauso 2009]  not a quantization function. In their work, the disturbance is Q(x0)=	
  x0 + d0 
where d0 denotes an unknown but bounded disturbance. Hence, it can be also seen as quantization 
error. The authors proved that under specific conditions defined in [Bauso 2009] an ε-consensus exists.  
In [Li 2011], the authors made the first connection of consensus and communication theory. They 
investigated distributed average consensus with limited communication data rates and proved that a 
faster convergence requires a higher quantization.  
In this section, we will start with Shannon’s channel capacity and we will directly link the signal-to-noise 
ratio (SNR) of a channel to the quantization of a link in a communication graph. We will prove that for a 
single time step the quantization error is bounded by the SNR of the channel. Each link between a node i,  
and a node j has a specific rate R/0 = log	
  (1 + γ/0), with the instantaneous SNR γ/,0 = g/0

X
∙ SNR which is 

given by the upper bound in form of the channel capacity on each link. The capacity of the channel is 
given by Shannon’s famous theorem: 
Theorem 5: [Cover 2005] The capacity of a Gaussian channel with an SNR 𝛾NO = 𝑔NO ∙ 𝑆𝑁𝑅 is  given by: 

C/0 = log 1 + γ/0 . ( 12 ) 

The available rate is upper bounded by the channel capacity R/0 = C/0. The maximal quantization error for 
a given data rate R/0 is given by: e0 = c/2���l*, where c = max x0 − min	
  (x0). Hence, we can rephrase 
the quantization error in terms of the current SNR 
Proposition 3: The worst case quantization error is given by: 

e0 =
c

2 1 + γ/0
. ( 13 ) 

Proof: The proof follows from Theorem 5 and e0 = c/2�����l*, hence, �
X��

= 2����� ⟺ 1 + γ/0 =
�
X��

. 

In what follows, we consider a strongly connected and balanced topology. Furthermore, we only consider 
Gaussian noise, then the SNR will be: SNR = P/σ,X where P denotes the power of the useful signal and σ,X 
denotes the variance of the noise. Let us further define the worst case quantization error for additive white 
Gaussian noise (AWGN) channels without channel fading ( g/0

X
= 1) as  

ε SNR =
c

2 1 + SNR
. ( 14 ) 

The following protocol is defined for a communication system where the nodes are transmitting quantized 
values: 

u/ t = a/0 Q0 t − Q/(t)
0

= a/0 x0 t + e0 t − x/ t − e/(t)
0

	
   ( 15 ) 

where, Q/(t) and Q0(t) are the quantized values of x/(t) and x0(t). Note, that this protocol is a 
generalization of the following protocol. 



If Q/(t) is a perfect quantization the error e/ t = 0. In our communication model we will have a limited 
capacity form node i to node j and perfect knowledge of the own state x/ t . In what follows, we use 
undirected graphs 𝒢	
  to simplify the derivations. Equation ( 15 ) is written as: 

𝐮 t = −𝐋 𝐱 t + 𝐞 t 	
  ,	
   ( 16 ) 

where,	
  𝐞 = [e*, … , e,]v. It can be simply checked that	
  𝟏v𝐮(t) = 0. Then also 𝟏v𝐱(t) = 0 holds. This 
means 𝐱(t) is a constant over time. Subsequently, 𝐱(t) can be decomposed to two parts α = *

,
	
  𝟏v𝐱(0) 

which is the constant mean value of 𝐱 t  over the time, and a deviation vector	
  𝛅(t). Hence, 
𝐱 t = α𝟏 + 𝛅 t 	
  .	
  	
  	
  	
  	
   ( 17 ) 

Now, we will prove that 𝐱 t  converges to α𝟏, and 𝛅 t  is bounded for high values of time. The following 
proof lines are borrowed from [Seyboth 2013]. From ( 16 ) it follows,  

𝛅 t = −𝐋 𝒢 𝛅 t + 𝐞 t 	
  	
  	
   ( 18 ) 

Hence, 

𝛅 t = e¤𝐋 𝒢 ¥	
  𝛅 0 + e¤𝐋 𝒢 ¥¤¦ 𝐋 𝒢 ∙ 𝐞 τ dτ
¥

�
 

( 19 ) 

Then, the deviation vector 𝛅 t  satisfies: 

𝛅 t ≤ e¤𝐋 𝒢 ¥	
  𝛅 0 + e¤𝐋 ¥¤¦ 𝐋 𝒢 ∙ 𝐞 τ dτ
¥

�
	
  	
  	
  	
  	
  	
  	
  	
  	
   

( 20 ) 

We have e¤𝐋 𝒢 ¥	
  𝛅 0 ≤ e¤¨©¥ 	
  𝛅 0 	
  [Ofati Saber 2004], [Seyboth 2013] and since the Laplacian 𝐋 𝒢  
is a Laplacian of an undirected, connected graph 𝒢, therefore, 𝒢 is also balanced we have 	
  𝟏v𝐋 𝒢 𝐞 τ =
0. Consequently, with [Seyboth 2011, Lemma 1] we have: 

𝛅 t ≤ e¤¨©¥ 	
  𝛅 0 + e¤¨© ¥¤¦ 𝐋 𝒢 ∙ 𝐞 τ dτ
¥

�
 

( 21 ) 

Where, λX(G) is the algebraic connectivity of the graph. Also,	
   𝐞 τ ≤ ∆(SNR) ≤ n ∙ ε(SNR), where 
∆(SNR) is the maximum quantization error, and 𝐋 𝒢 ∙ 𝐞 τ ≤ 𝐋 𝒢 ∙ 𝐞 τ . Then,  

𝛅 t ≤ e¤¨©¥ 	
  𝛅 0 + e¤¨© ¥¤¦ 𝐋 𝒢 ∆(SNR)dτ
¥

�
	
  	
   

( 22 ) 

Hence,  

𝛅 t ≤ e¤¨©¥ 	
  𝛅 0 −
∆ SNR 𝐋 𝒢

λX
	
  	
  e¤¨©¥ 	
  +

∆ SNR 𝐋 𝒢
λX

, ( 23 ) 

which means that 𝛅 t  converges to ∆(¬��) 𝐋 𝒢
¨©

. This indicates smaller deviation from the consensus 
value α for smaller values of the quantization error. We can summarize the previous derivation in the 
following theorem: 
Theorem 6: Let 𝒢 be a static undirected graph, the disagreement vector is bounded as follows: 

𝛅 ∞ ≤
∆ SNR 𝐋 𝒢

λX
. ( 24 ) 

If the ∆ SNR  decreases also the error decreases. The lower the SNR in a time instant, the larger the 
quantization error. Hence, to control the system we need an adaptation of the quantization error. 
Concepts for this adaptation are introduced in the next section. 
 

5 Cross-Layer Design Resource Allocation for Distributed 
Control  

 
In this section, we present transmission protocols to coordinate the transmission of the nodes in case of 
a wireless channel as a shared medium. Here, we only consider so-called time division multiple access 
(TDMA) schemes which means that the channel access is coordinated among different time slots. Due to 
the limited bandwidth of the shared wireless channel medium, the quantization, which can be used to 
transmit the state to another user, is limited. Hence, there will be a quantization error as introduced in 
Section 4.    
Communication is structured in layers [Tanenbaum 2003]. Here we use a simplified structure depicted in 
Figure 4. The channel ressources are also called physical (PHY) layer resource. Here, we consider only 
time slots which must be shared by different transmitters. The medium access (MAC) – PHY layer 



coordinates the allocation of resources. Above this layer, there is an interface to the application (APP) 
layer. The MAC-APP layer adapts the quantization based on the available resources in the MAC-PHY 
layer. The communication from node i to node j is, therefore, as follows: node i knows the current 
channel state (proportional to SNR) and, therefore, the available resources. Then, node	
  i can, e.g., 
choose an adapted quantization to discretize its state which has to be transmitted to node j. The MAC-
PHY layer assigns resources for the transmission of the quantized state and encodes it for the 
transmission over the PHY layer by choosing a sufficient channel coding and modulation scheme 
available for the current SNR. 
In the following subsections, we will present two simple MAC layer protocols for the adaptation of the 
quantization or the transmission period. The first scheme is called adaptive quantization (AQ). Here the 
transmission delay is constant, however, the quantization is adaptive. The second scheme is called 
adaptive transmission length (ATL). In the ATL scheme, the quantization is constant but the transmission 
duration is variable. 
 
 

 
Figure 4: Communication structure of the consensus system 

5.1 Adaptive Quantization (AQ) 
 
The idea is very similar to the discussion in Section 4. The transmitted variables are sent via wireless 
channels with limited capacity. Here, we assume a fading channel with an SNR given by γ/0 = g/0 ∙
SNR between two nodes i, j. The variable g/0 denotes the channel gain. The channel gain is constant 
during a slot of length T®. In each time slot we have a different SNR. The transmit scheme is time division 
multiple access (TDMA). Each transmitter has a specific transmit period T¯ = T® which is equal to the slot 
length. After this transmit period the next transmitter is scheduled. Hence, the shared channel is divided 
into orthogonal time slots.  

 
Figure 5: TDMA transmission  

In each slot the transmitter can use the bandwidth B. The upper bound of the achievable rate to transmit 
a specific state from i to j within this slot period is given by: 

R/0(k) = 	
  B	
   ∙ logX 1 + SNR ∙ 	
   g/0(k)
X
	
   	
  	
  bits/s. ( 25 ) 



The transmitter can estimate the SNR of the next slot, e.g., based on the uplink signal. The rate R/,0	
  is 
variable and depends on SNR of each link. Therefore, the number of bits that can be transmitted during a 
transmission period T¯ is changing. This results in the following protocol:  
Protocol 1: AQ. The number bits determines the quantization which can be used for the quantization of 
the state which will be transmitted from node 𝑖 to node 𝑗.   
To discretize the system, we use the same discrete time model as presented in [Olfati-Saber 2004] 
with a step-size ε³ > 0, hence, the update ( 2 ) will be: 

x/ k + 1 = x/ k + ε³ ∙ u/ k  ( 26 ) 

The quantization Q x0  of the state x0 is differential, hence, the node j transmits the quantized difference 
Q x0 k − x0 k − 1 . We furthermore assume that the own state x/ t 	
  is perfectly known e/ t = 0. The 
transmitter knows, the quantization, therefore, the transmitter also knows the signal x0(k − 1) updated by 
the receiving node. The receiving node i then updates its estimation of x0 by  

x0 k = x0 k − 1 + Q x0 k − x0 k − 1 = x0(k) + Δ0(k). ( 27 ) 

Table 1 presents the first three steps of the proposed protocol with differential quantization. 
Based on the estimated SNRs of all links, the transmitter chooses the minimum capacity (and 
according quantization) over active connections from the transmitting node to all receiving nodes. 
The adaptive quantization protocol ensures a fixed transmission delay, however, the error due to the 
quantization in case of low SNR can be very large. In Figure 6, the quantization function 𝑄(𝑥) for 
different SNR values is depicted. The larger the SNR, the better the resolution of the quantization 
function. To simplify the investigations we assume 𝐵	
  𝑇¹ = 1 and 𝑔NO(𝑘)

X
= 1 for all 𝑖, 𝑗. In case of an 

SNR of just 5dB only 2 bits are available, because 𝑙𝑜𝑔X 1 + 𝑆𝑁𝑅	
   = 2.0574	
  𝑏𝑖𝑡𝑠. The initial states are 
given by 𝒙 0 = −0.2, 0.1, 0.2, −0.1 À. The average value is 𝛼 = 0, hence, all states will converge to 
zero, in case average consensus is achievable.  
 

 
Figure 6: Quantization at different SNR values. 

 
  



 
 Node 𝑗 Node 𝑖 

Time State  Sent to node 𝑖 Knowledge of its state at 
node 𝑖  

Updated value of state 𝑗 

0 𝑥O 0 = 𝑥O 0  𝑥O 0 = 𝑥O 0  𝑥O 0 = 𝑥O 0  𝑥O 0 = 𝑥O 0  
1 𝑥O 1  𝑄 𝑥O 1 − 𝑥O 0  𝑥O 1 = 𝑥𝑗 1 + 𝛥O(1) 𝑥O 1 = 𝑥O 0 + 𝑄 𝑥O 1 − 𝑥O 0

= 𝑥𝑗 1 + 𝛥O(1) 
 

2 𝑥O 2  𝑄 𝑥O 2 − 𝑥O 1  𝑥O 2 = 𝑥𝑗 2 + 𝛥O(2) 𝑥O 2 = 𝑥O 1 + 𝑄 𝑥O 2 − 𝑥O 1
= 𝑥𝑗 2 + 𝛥O(2) 

 
3 𝑥O 3  𝑄 𝑥O 3 − 𝑥O 2  𝑥O 3 = 𝑥𝑗 3 + 𝛥O(3) 𝑥O 3 = 𝑥O 2 + 𝑄 𝑥O 3 − 𝑥O 2

= 𝑥𝑗 3 + 𝛥O(3) 
 

…     
Table 1: First three steps of the AQ protocol with differential quantization. 

 
Figure 7 presents the simulation results for a network with four nodes. The communication graph is a 
complete and undirected graph. We can observe that in case of a low quantization error, a final 
disagreement is the result, while in case of a high SNR, average consensus can be achieved. 
 

 
Figure 7: Simulation Results for AQ with a complete graph with four nodes and different SNR values. 

5.2 Adaptive Transmission Length (ATL) 
 
In this section, we assume a fading channel with an SNR given by 𝛾NO(𝑘) = 𝑔NO(𝑘) ∙ 𝑆𝑁𝑅(𝑘) between 
two nodes 𝑖, 𝑗. The Variable 𝑔NO(𝑘) denotes the channel gain. In each timeslot 𝑘 we have a different SNR. 
The transmit scheme is also TDMA. However, now the quantization is fixed. Hence, the transmitter must 
use multiple slots in case the achievable rate within a single slot was not sufficient to transmit the state 
with the given quantization. Therefore, each transmitter has a transmit period which consists of multiple 
time slots 𝑇Ã = 𝑁 ∙ 𝑇Ä.  After this transmit period the next transmitter is scheduled. The upper bound of 
the achievable rate is then given by: 

𝑅NO = 	
   𝐵	
   ∙ 𝑙𝑜𝑔X 1 + 𝑆𝑁𝑅 ∙ 	
   𝑔NO(𝑘)
X
	
  

Å

Æz*

	
  	
  𝑏𝑖𝑡𝑠 
( 28 ) 

The rate 𝑅NO is fixed and determined by the used quantization. The protocol is defined as follows:  
Protocol 2: ATL. The quantization used for the transmission of the states is fixed. To ensure a fixed 
quantization for the transmission of the state of a node 𝑖 to node 𝑗, multiple slots must be used. The 
transmission is complete if all bits for the current quantized states are transmitted. In case of multiple 
active links from one transmitting node to multiple receiving nodes, the link with the lowest SNR 
determines the (largest) number of slots which is necessary to transmit the current state with the given 
quantization error free to all receivers. 
Figure 8 presents the slot structure of the proposed protocol.  



 

 
Figure 8: TDMA scheme used for the transmission. Here each transmitter has a different number of slots 
for the transmission of its current state. 

In contrast to the AQ protocol, which has a variable quantization but guarantees a transmission delay due 
to the fixed transmission period 𝑇Ã, we now have a variable transmission period 𝑇Ã = 𝑁 ∙ 𝑇Ä and a fixed 
quantization. The node will continue the transmission until all bits of the state with the given quantization 
are transmitted. This scheme needs an additional negotiation among the nodes due to the variable 
transmission periods. 
Figure 9 presents the simulation results for ATL and the same stetting as in the previous section. Here, 
we use a desired quantization of 6 bits. To achieve the desired quantization a different number 𝑁 of slots 
is required depending on the given SNR. The higher the SNR the faster is, therefore, the convergence. 
Compared to AQ, the final accuracy is the same for all SNR values. In contrast to ATL, AQ has the same 
convergence rate until the possible accuracy is reached. ATL has for all simulated SNRs the same 
accuracy, however, a different convergence time. 
 

 
Figure 9: Simulation results for ATL with a complete graph and different SNR values. 

 

6 Conclusions and Emerging Topics  
This chapter presented how a limited capacity on the links results in an additive consensus error. This 
error depends on the current SNR of the communication links. Two communication protocols AQ and 
ATL are proposed for these capacity limited multi-agent systems. Comparing the results of AQ and ATL, 
we can observe that high SNR can achieve either a high accuracy (AQ) or a fast convergence (ATL) in 
case of a given, desired quantization.  

In addition to the SNR, the network topology is a further performance parameter. Based on the 
discussion of the previous sections, we can observe that a dense topology is not always advantageous 
compared to a sparse topology. A dense topology can achieve a fast convergence in a mathematical 
sense of the consensus system. However, then multiple slots are required increasing the convergence 
time. Therefore, the future work must investigate the trade-off between consensus convergence and 
sparse allocation of communication resources. The topology must be optimized based on 
communication channel states. However, the communication channel can be influenced by the system 
dynamics. Therefore, a challenging research topic for future research is the joint control of the system 
dynamics with respect to the communication abilities resulting from a specific system topology. 
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