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Abstract-The reliability of a short range packet radio network 
for mobile stations is investigated via the probability of a suc- 
cessful transmission. The instantaneous power of an interfering 
station's transmission is described by a Rayleigh distribution. We 
determine the distribution of cumulated interference power and 
the probability of a successful transmission, when the number 
of interfering stations is random and each station transmits only 
with probability p .  Two lower bounds of increasing complexity are 
given. We evaluate these bounds for an intelligent cruise control 
system, when mobile stations are lined up in a traffic jam, and 
one approaching vehicle should be warned by the last member 
of the queue. 

I. INTRODUCTION 

HE basic tool of intelligent cruise control is a reliable T communication link between vehicles by radio technol- 
ogy. This will be used to automatically exchange relevant 
information concerning position, velocity, waming messages 
to approaching vehicles, etc. Particularly for the last case it is 
necessary to estimate the reliability of a radio channel via the 
probability of successfully transmitting a data packet. 

In this paper we assume a decentralized system, based on the 
slotted ALOHA protocol, and a channel subject to Rayleigh 
fading. In order to analyze the probability of a successful 
transmission the following parameters have to be taken into 
account: 1) the number of involved stations, 2 )  their locations, 
3) the probability of transmitting in a slot, 4) the distribution 
of cumulated power of interfering stations, and 5) the intemal 
thermal noise at a receiver. We model the capture effect by 
defining a transmission as being successful, whenever the 
signal power of a transmitter is larger than a certain minimum 
strength threshold K ,  and simultaneously the signal-to-noise 
ratio exceeds a certain capture ratio y. 

In this paper we deal with the above characteristics, and 
calculate for an important application like intelligent cruise 
control explicit lower bounds. The organization is as follows. 
Paying attention to the above quantities, in section 2 we 
derive the distribution of cumulated interference plus thermal 
noise power, which is needed to calculate the probability of 
a successful transmission. In order to gain explicit values 
of reliability, sharp upper bounds are obtained by stochastic 
preordering. These results are applied in section 3 when mobile 
stations are lined up in a traffic jam, and one approaching 
vehicle has to be warned by the last member of the queue via 
the communication link (see Fig. 1). We consider this (one- 
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Fig. 1. Location of stations. 

dimensional) model appropriate, e.g., for a highway scenario. 
Because of short range transmission lateral interferers from 
other roads may be neglected. Even in urban environments 
lateral interferences are shadowed by buildings along the 
streets. 

For this scenario the lower bounds are calculated numer- 
ically for certain parameters which allows an assessment of 
system reliability. The key point of our approach is to combine 
stochastic properties of the location model and the channel 
behavior in a joint realistic model, and to give an analysis of 
system reliability by a new mathematical setup. 

11. PROBABILITY OF A SUCCESSFUL TRANSMISSIONS 

We consider a reference station A,  going to transmit a data 
packet to a receiver R. We furthermore assume interfering 
stations A I .  A2. . . . whose number is a random variable N 
with support No and discrete density 

P ( N  = 7 1 )  = a,, . 71 E No. 

The channel access protocol is slotted ALOHA. We sup- 
pose that each station transmits with probability p in a slot, 
independently of all others, and remains silent with probability 
q = 1 - p .  Due to shadowing effects a Rayleigh fading channel 
is assumed such that the instantaneous interference power S, 
of station A; at B has distribution function 

(1) 

with (1, > 0, i E N, proportional to the distance between Ai 
and B. (1) is a mixture of an exponential distribution with 
parameter d; and the Dirac measure at 0 . The exponent 2 
in d? is typical for radio wave propagation in a landscape 
scenario which we assume furtheron. Si has a representation as 
Si = U, .T,, where U,, Ti are independent, Ti is exponentially 
distributed with parameter d?, and P(Ui = 1) = p , P(Ui = 

Fs, (:I:) = q + p (  1 - e&). :I: 2 0 

0) = 1 - p .  
We denote by 

n N 
S(") = Si. and S = S; 

the cumulated interference power when n stations are present, 
and the cumulated interference power with a random number 
of stations, respectively. 

i=l i=l 
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The instantaneous signal power X of reference station A 
at B is assumed to have a density f x ( z ) ,  z 2 0, which may 

202) 
7. z 

correspond to a Rician or Rayleigh fading channel. Its explicit 

To be close to reality we take account of the intemal thermal 

fhypexp(Xo, . . . ,A,)(x)  = ( n Z - ) x m e - A e ' S  , T  2 0, 
form will be specified later. m=O J = o  4 -Am 

J f m  

noise power of receiver B,  described by the random variable 
2, distributed according to an exponential distribution with 
parameter r? > 0 and density 

where 
for all # 
as a corresponding density. 

- d2 , j = 1,. . . i , and xo = (T2, provided A, # A, 
E {o, , . . , i}. Obviously, i = 0 yields fexp(Ao) (.) 

3 - k J  

From the uniqueness theorem of Laplace transforms, by (4) 
(2) it follows that 

In the following we suppose that the random variables X ,  2, 
Si, i E N , and N are all stochastically independent which 
seems to be a quite natural assumption. 

According to [ l l ]  a signal is correctly received if 
i) X > IC., with IC. the minimum signal power threshold to 

ii) X / ( S  + 2)  > y, with signal-to-noise ratio X / ( S  + 2)  

Condition (ii) has been used for the special case 2 0 
in [l], [3], [7] and [SI. The more realistic assumption of 
nonvanishing thermal noise was recently introduced by [2] 
and [ 5 ] .  

The probability of a successful transmission from A to B 
is now given by 

realize a correct reception, and 

and capture ratio y. 

The key point is to evaluate P ( S ( n )  + 2 5 x/y) in this 
expression, i.e., determining the distribution function of S(") + 
2. By (1) and (2) the Laplace transforms of Si and 2 are 
given by 

Because of independence, the Laplace transform of S(") + 2 
is obtained as 

n 

L,C4+Z(S) = L Z ( S )  . n ~ S , ( S ) ,  2 0. 
i=l 

With Zi(s) = d:/(d: +s),  i = 1 , . . . ,  n, and l ( s )  = 
C ? / ( ( T ~  + s) it follows that 

n 

L,C,)+Z(S) = l ( s )  . r-J (4 + P W )  = l ( s )  
i=l 

is the distribution function of S(") + 2. In summary, p,,, in 
(3) is given by 

with the hypoexponential distribution function 

(7) 
The structure of equation (6)  is rather complicated since the 
number of summands in the second term is cy=o (a) = 2", 

which increases exponentially with n. This means that for a 
heavy tailed distribution ( a n ) n E ~ o  the total sum of (6) can be 
hardly approximated numerically. This leads to the objective 
to find good lower bounds for the desired probability p,,, for 
certain scenarios. Such lower bounds may serve as estimates 
of the reliability of a system. 

Let m E N O  be fixed and 2 + S = 2 + c:,UiTi 

with 2, Vi, Ti, and N independent random variables with the 
distributions introduced above. We easily get lower bounds for 
p,,, in (6) from the following chain of inequalities 

m N 

+ ( C U i T i  + UiTi)U{N>m]?Z 
i=l i=m+l 

N 03 (4) 

a hypoexponential distribution with density (see, e.g., [lo], p. 

2 2-k ( x u i T z ) U { N < m }  f ( c T z ) U { N > m } ,  
The product l ( s ) l k ,  (s) . . . l k ,  ( s )  is the Laplace transform of i=l  i=l 

(9) 
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s t  
where '5' means stochastically larger (see, e.g., [6]) .  The 
distribution of Z + S ,  conditional on N = n , is given by 
(5) .  

(8) means that in the case of more than m, stations present, 
infinite many with indices m, + 1, m. + 2 , .  . . transmit with 
probability p = 1. (9) reflects the fact that with more than m 
stations present, infinite many with indices 1 . 2 ,  . . . transmit 
with probability one. This shows the above inequalities on an 
intuitive basis. 

111. TRAFFIC SCENARIOS AND LOWER BOUNDS 
We start with a description of the location model. The 

transmitting station A is located at the origin of the real line 
R1. A is addressing a station B at distance b left of A.  There is 
a random number N of interfering stations Ai, located to the 
right of A with constant interspace d > 0 . Thus, station A; has 
the distance d; = h + di from B. Fig. 2 gives a comprehensive 
overview of positions. 

This model is well suited to describe a traffic jam with 
vehicles A and A I ,  Az, . . . . AN lined up at an obstacle, and 
B is a vehicle approaching the end of the queue formed by A .  
A is willing to transmit a warning to B via a corresponding 
data packet, and it is most important to estimate the probability 
of a successful transmission of this packet. We accept the same 
independence assumptions as in section 2. As has been pointed 
out there, a direct evaluation of (6) seems not to be feasable. 

In the following we calculate lower bounds of psuc . The 
first one is derived from (9), where we need the distribution 
of Z + E,"=, Ti. This distribution is obtained by taking p = 1 
and the limit in 72 ---f x in (3, 

lim Fhypexp(Ao ...., A,,) n-m 
n n  

= lim ( n A) (I - e - ~ i . r ) . : r  2 0. (10) 
71" A; - X i  ;=o J = o  

J # ?  

with XO = 02, X i  = ds , and o2 # d% for all i 2 1. 
It remains to calculate lini,,,, Fhyppxp(rr~,d: ,,,,, , Le., the 

limit distribution w.r.t. weak convergence. For this purpose, 
~ ~ = o , j + i X ; / ( X j  - X i )  has to be determined as 71 ---f x in 
representation (10). To simplify calculations we assume that 
b is a multiple of d, i.e., 

b = k d  for some k E N. 

We furthermore assume that XO = a' # X j  = ( ( k  + j ) d ) *  
for all j 2 1. The product is treated separately for i = 0 and 
i > 0. In the first case we have 

n + k  

7ra/d 
s in( ra /d)  ir (1- &). 

where the limit is due to Euler's formula (see e.g. [4]), 

b d d d  

& & A &  duecuon e---- 
B A A 1  A 2  A 3  

Fig. 2. Location of stations 

The case i > 0 is treated along similar lines. With P = k + i 
we obtain 

n 1 

J = O  
J # l  

The infinite product is now calculated using (11)  and 
1'Hospital's rule as follows 

30 35 

7r cos(7r.r) 
. s+i lini ~ ( 1  - $ / P )  - 7rr(2r)/f2 

Combining both cases, the limit distribution F,. k is obtained 
as 

Fc2,k(r) = n-30 1iITl Fhvprxp(rr'.d:. . d : , ) ( , r )  

n n ,  

=I  - lini (n +) cxp (--X?.r) A, - X r = n  j = o  
11-x 

J # t  

IC 

and F,~,k(0)  = 0. 
(T -+ 30 lets the thermal noise power at receiver B vanish. 

This is a special case of ( 1  2), which together with d = 1 and 
k = 0 has been considered by [7 ] .  The distribution function 
reduces to 

where the empty product in (12) is set to I .  
A lower bound for the probability of a successful transmis- 

sion is now easily combined from (3), (3, (9), and (12). For 
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any in E N o  it holds that 

n 

p l (m)  8.4B ,--.- 
upper curve: m = 6 0.35 kn. ... 

distance [meter] 

Fig. 3. Lower bounds l i l ( m )  with S N Poi(2) ,  -, = 2 .  

The lower bound (13) can be easily calculated since the 
series in the representation of Fu2,k  converges very fast, due 
to squared negative exponents. The approximation is more 
accurate the larger m is. The worst approximation holds for 
m = 0, the exact value is attained as m -+ m. Note that for 
any m this bound only depends on ao, . . . , a,. 

A superior bound of p,,,-but at the price of increased 
numerical effort-can be achieved from (8). The distribution 
of 2 + Czm+l  T, is clearly given by F,z,k+, from (12). 
The distribution function of S(") = UiTi is obtained 
along similar lines as (5) 

m 

i = l  

Thus, the distribution function G u z , k , m  of + UiTi + 
C,c"_m+l Ti is given by 

G u Z , k , m ( X )  = (Puz.k+m * F s i m ) )  

= L ' f c + , k + m ( X  - t ) d ~ s ( m ) ( t ) , z  2 0, 

where * denotes the convolution operator. 

it follows that 
In summary, by conditioning on N = n and exploiting (8) 

n 

The lower bound (14) is better than (13). This is an easy 
consequence of inequalities (8) and (9). 

distance [meter] 

Fig. 4. Lower bounds f ~ l ( n z )  with S N Poi(2). = 4. 

IV. NUMERICAL EVALUATION 
The lower bound ijl(m) of (13), which approximates the 

true value p,,, at arbitrary precision as m + 03, has been 
calculated numerically for different parameters. We assume 
that the signal power X is derived from a Rayleigh fading 
channel. This yields worst case bounds for p,,, , even in the 
case of direct line-of-sight between stations A and B. The 
bounds thus ensure the safety requirements of the system. The 
signal threshold is set to IF. = 17dB [9] throughout this section. 
To get an impression, Fig. 3 depicts the curves of ijl(m) for 
m = 0 , .  . . ,6. Distances are measured in meters. 

The lower bound $1 (m) is represented versus transmitter-to- 
receiver distance b for varying m. The traffic congestion length 
N is assumed to be Poissonian distributed with expectation 
X = 2, i.e., N N Poi(2) , The channel access probability p ,  
the distance d, and the capture ratio y are set t o p  = 0.5, d = 7 
meter, and y = 2, respectively. The curves are monotone 
decreasing due to an increasing distance of transmitter A 
to receiver B. The decreasing probability of a successful 
transmission is due to the reduced signal power of vehicle 
A, that decreases proportional to dP2.  Depending on m, the 
curves increase obviously to a limiting curve, which is clear 
from (9). The limiting curve represents p,,, versus transmitter- 
to-receiver distance itself. 

The next diagram Fig. 4 shows curves of the same parameter 
configuration, except the capture ratio which is now set to 
y = 4 .The curves exhibit a similar behavior compared to 
the above, but generally run below the corresponding curves 
of Fig. 3. This behavior was to be expected, because an 
increased capture ratio reduces the probability of a successful 
transmission, which may be easily seen from equation (3). 

To get insight into the effect of bigger traffic jams, the 
random variable N is now assumed to be discrete uniformly 
distributed on the set { i  E No I 0 5 i 5 50}, i.e., 
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Fig. 5.  Lower bounds fi1 ( in  j with .\- - I . (O . .  . . . 501, -, = 2 

0 . 8  

0 . 6  

a. 4 

a .  2 

a 0.1 0 . 2  0 . 3  0 . 4  0.5 0 . 6  

PS“d1)  

N N U ( 0 , .  . . ,SO). In addition, the parameters capture ratio 
y = 2, distance d = 7 meter, and channel access probability 
p = 0.1 apply. The probability p has been reduced in order 
to achieve a more realistic application behavior. Fig. 5 shows 
the results.This model induces significantly reduced success 
probabilities due to an increased number of interferers with 
expectation E[N] = 25 , and a reduced channel access 
probability p .  Evidently, p,,,, cannot exceed p = 0.1, and 
f i l (50)  would represent the exact values psUc for all p .  

Figs. 3, 4 and especially Fig. 5 show that the success 
probability of a single warning, psllc(l) say, is rather low. 
But with k independent attempts it increases to pSllc(k) = 
1 - (1 - where p , , , , ( k )  denotes the probability of 
at least one succesful warning with k attempts. This method 
decisively increases the success probability (see Fig. 6). For 
instance, if pSllc 2 0.3 for a single warning, with 8 attempts 
we get an overall success probability larger than 0.92, and 
with 16 attempts p,,,, is nearly 1. 

The question arises, which channel access probability p is 
optimal for one slot. The dependence of the estimated success 
probability $1 (m)  on the channel access probability p is shown 
in Fig. 7. The curves have been calculated for m = 6 and 
intervehicle distance d = 7 meter, the number of interferers is 
assumed to be Poissonian distributed with expectation X = 2. 
Observe that for m = 6 the lower bound $l(m) is very close 
to the true value psllr (cp. Fig. 3 and Fig. 4). 

Fig. 7 illustrates two sets of curves for a transmitter-to- 
receiver distance 200 and 300 meter, respectively, each cal- 
culated for the capture ratios y = l ,  2 :  4. It turns out that 
the success probability bound $1 (6) decreases with increasing 
capture ratio. Interestingly, for a capture ratio y = 3 ,  jjl(6) 

= 2 e . -  

, 

Fig. 7. Lower bounds i , l  (6 )  versus p with .Y N Poi(2) .  -, = 1. 2 .4  . 

hardly changes between 1’ = 0.6 and p = 1 . This means 
that a channel access probability of p = 0.6 yields nearly the 
same success probability as p = 1. In other words, reducing p 
from the optimal value 1 to 0.6, thus saving 40% of channel 
capacity, causes nearly no loss in psll, . Observe that this effect 
depends on the specific scenario, here particularly a Poisson 
random number of interfering stations with expected value 2. 
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