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Eigenvalue-Based Optimum-Power Allocation for
Gaussian Vector Channels
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Abstract—In this correspondence, we determine the optimal power
allocation to antennas in a Gaussian vector channel subject to ` -norm
constrained eigenvalues. Optimal solutions are characterized by using
directional derivatives of the mutual information. As the central result,
the optimal power assignment is obtained as the level crossing points of a
set of simple monotone functions. The well-known water-filling principle
for sum power constraints is retrieved as the limiting case p = 1. A nested
Newton type algorithm is given for finding numerical solutions.

Index Terms—Capacity, concavity, directional derivatives, generalized
water-filling ` -norms, max and sum power constraints, multiple-input–
multiple-output (MIMO).

I. INTRODUCTION AND SYSTEM MODEL

Power allocation is an important challenge when transmitting over
multiple antennas. The general model we adopt for this purpose is a
linear vector channel with Gaussian noise and arbitrary input distribu-
tion; in standard notation

yyy = HHHxxx+ nnn: (1)

The complex r � t matrix HHH describes the linear transformation the
signal undergoes during transmission. The random noise vector nnn 2
r is circularly symmetric complex Gaussian distributed (see [1]) with

expectation 0 and covariance matrix (nnnnnn�) = IIIr , denoted by nnn �

SCN(0; IIIr). The complex zero mean input vectorxxx is subject to power
constraints described by

(xxxxxx�) = QQQ 2 Q (2)

for some set of nonnegative definite matrices Q. Finally, yyy denotes the
received vector.
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The general model applies to many different communication
systems, including a point to point multiple-input–multiple-output
(MIMO) transmission system with r receive antennas and t transmit
antennas (see [1]–[3]). Transmit beamforming, broadcast and multiple
access channels, cellular code-division multiple-access (CDMA)
radio, and digital wireline systems all fall within the scope of the
above model.

As is detailed in Section IV, the information-theoretic capacity of
the channel described in (1) is given by the maximum of the mutual
information, as in

C = max
Q2Q

I(xxx; yyy) = max
Q2Q

log det(III +HHHQQQHHH
�)

over all feasible covariance matrices QQQ of the input xxx, where ’��’ de-
notes the conjugate transpose.

In the following we assume complete channel state information in
that HHH is known at the transmitter and the receiver. In this work, we
focus on sets Q obtained by constraining the p-norm of the vector of
eigenvalues (�1(QQQ); . . . ; �t(QQQ)) of the power matrices QQQ 2 Q by
some constant L, i.e.,

t

i=1

�
p
i (QQQ)

1=p

� L: (3)

In the case of sum power constraints at the transmitter, the capacity
and the associated optimum power allocation strategy is given by the
water-filling principle, see [1], [4], [5]. This well-known solution is
obtained as the special case p = 1 in a rather natural way. In this cor-
respondence, we show that the more general formulation, in terms of
the p-norm constraint, enables one to approach other more complicated
constraints, such as when the standard sum power constraint is accom-
panied by constraints on the powers of the individual components. This
application, and others, are discussed further in Section II.

This correspondence provides an algorithm to solve the p-norm con-
straint that is almost as fast as water pouring in general, and reduces to
water pouring when p = 1. From a mathematical point of view, the
present approach is conceptually simple, providing an elegant general-
ization of the concept of water-filling.

From a methodological point of view we proceed as follows. First,
the optimum solution is characterized by the fact that directional
derivatives in any direction are nonpositive. Then, by evaluating this
condition for p-norm constraints, explicit solutions are obtained,
generalizing some of the topics in [6] and [7]. Another way to achieve
the optimal solution is the well-known KKT-approach, as outlined in
the Appendix. Since the concept based on directional derivatives is
new and self-contained, this approach is explicated in the following
sections.

This correspondence is structured as follows. We start with motiva-
tion for the p-norm constraint in Section II. We introduce the general
concept of directional derivatives in Section III. Section IV, directional
derivatives as well as gradients are determined. In Section V, the op-
timization problem for achieving capacity subject to eigenvalue con-
straints is addressed. Section VI describes an algorithm for determining
the optimal solution numerically. A short summary concludes our work
in Section VII.

II. MOTIVATION

The eigenvalues of QQQ are intimately connected to the transmit
powers, as follows. First, the sum of transmit powers (the trace of QQQ)
is equal to the sum of the eigenvalues of QQQ. Thus, the sum power con-
straint is retrieved by taking p = 1 in (3). Water-filling provides a fast
algorithm to maximize capacity subject to the sum power constraint.
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The practical motivation for dealing with more general values 1 �
p � 1 is to provide a similar fast numerical method to handle con-
straints in addition to (or replacing) the sum power constraint. Exam-
ples of such constraints are found in [8] and the references cited therein.
For example, in the example of an antenna array, it may be required to
bound the dynamic range of the power amplifier at each transmit an-
tenna, and this can be approached by replacing p = 1 with p =1, see
[8]. This follows since

(q11; . . . ; qtt) � (�1(QQQ); . . . ; �t(QQQ))

where q11; . . . ; qtt are the individual transmit powers, and where ’�’
denotes majorization, see [9, p.218]. In particular,

max
1�i�t

qii � max
1�i�t

�i(QQQ)

which implies that bounding the maximum eigenvalue with p = 1
also provides an upper bound to the maximum average antenna power.

To see why values of p within the interval 1 < p < 1 may be of
interest, consider the case in which there is a constraint, �, on the sum
of the average transmit powers, but there is also a constraint, �, on the
average power of each individual component. Suppose that �=t � � �
�, which is the interesting case in which it is necessary to state both sum
and individual constraints (if � � � then the problem reduces to water
filling, and if 0 � � � �=t, we reduce to the p = 1 case mentioned
above). The following lemma then applies.

Lemma 1: Let �=t � � � � and

p =
ln t

ln(�t=�)
: (4)

Then anyQQQ satisfying (3) withL = � also satisfies both the max power
constraint�max(QQQ) � � and the sum power constraint t

i=1 �i(QQQ) �
�. Moreover, the above p is the largest possible value with this property.

Proof: First, it is immediate that if (3) holds, then the maximum
eigenvalue cannot exceed �, and the considerations above imply the
same is true of the maximum individual power. Now consider the op-
timization problem

max

t

i=1

�i s:t:

t

i=1

�pi

1=p

� �: (5)

Provided 1 < p < 1, this has a unique optimum value of �t1�1=p

achieved when all �i are equal. At p = 1 this is still true, but the
solution is then not unique. The value of p in (4) is the unique solution
to the equation �t1�1=p = � and under the condition of the lemma, it
also satisfies 1 � p <1. It follows that if QQQ satisfies (3) with L = �,
then it is necessary that t

i=1 �i(QQQ) � �. Since the trace of a matrix
is the sum of its eigenvalues it also follows that the system satisfies a
sum power constraint of �. Note that if p takes a value larger than the
value specified in (4) then the maximum value in (5) exceeds �, and
hence one cannot guarantee that the sum power constraint of � will be
satisfied.

We conclude that if the exponent p is appropriately chosen then con-
straint (3) is sufficient to jointly meet both a max average power con-
straint with threshold � and a sum average power constraint with upper
bound �. This fact is illustrated in Fig. 1, which depicts the intersec-
tion of the sum power constrained region using � = 1:55 with the max
power constrained region, using � = 1 (dark shaded jointly with light
area) in 2, i.e., the set

f(�1; �2) j �1 + �2 � 1:55; 0 � �1 � 1; 0 � �2 � 1g:

Fig. 1. The intersection of sum power constraints with L = 1:55 and max
power constraints with L = 1 (the union of dark shaded and light shaded
areas) approximated by the p-norm constraints with L = 1 and p = 2:7 (light
shaded area).

This region can be approximated by the p-norm constrained region (3)
with L = � = 1 and p = 2:7 (light shaded area). Clearly, the con-
straint (3) is only sufficient, in the sense that the p-norm region is only
a subset of the intersection of the regions defined by each individual
constraint. However, it is a close approximation in this case.

Although it is certainly possible to formulate an optimization
problem including both the sum constraint, and the individual con-
straints, there is no known algorithm anywhere near as fast as water
pouring in general. A contribution of the present correspondence is
to show that there is such an algorithm, if we replace the separate
constraints by the single constraint of the form (3).

The constraint (3) may also be useful in modeling other system con-
straints. For example, it may be that the transmit power radiated in cer-
tain directions should be bounded (as discussed in [8]) in addition to
the requirement that the sum power constraint must hold. This situation
arises in multiuser applications, when the interference created by the
transmitter must also be considered.

For a unit vector uuu 2 t, the power radiated in direction uuu is
uuu�QQQuuu: This is the interference power experienced at another node,
if the channel matrix to the other node is GGG (an r0 � t matrix if the
receiver has r0 dimensions), the linear receiver vector used at that
node is ccc 2 r , and the direction uuu is identified with the vector GGG�ccc.
If the precise directions used by other nodes are not known by the
transmitter, then it may be useful to bound the power radiated in all
possible directions. This is analogous to providing an upper bound
on power spectral density (or, more generally, a spectral mask) in the
frequency domain.

Using the theory of Rayleigh quotients

max
uuu uuu

uuu�QQQuuu = �max(QQQ)

which implies that�max(QQQ) � � is sufficient to ensure thatuuu�QQQuuu � �
for any direction uuu. Thus, even if there are no explicit individual power
constraints, a bound on the maximum eigenvalue provides an effective
spectral mask on the radiated power in any direction. The present cor-
respondence provides a way to couple this constraint with a sum power
constraint, to obtain a fast algorithm analogous to water filling.

III. PRELIMINARIES

In this section, we briefly summarize the concept of directional
derivatives and its relation to the optimization of concave functions.
Let f be a real-valued concave function with convex domain C and
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x̂, x 2 C. The directional derivative of f at x̂ in the direction of x is
defined as

Df(x̂; x) = lim
�!0+

1

�
[f ((1� �)x̂ + �x)� f(x̂)]

=
d

d�
f ((1� �)x̂ + �x)

�=0+

(6)

see, e.g., [10], or [11] (the latter with a slightly modified definition).
Since f is concave, (f((1� �)x̂ + �x)� f(x̂)) =� is monotone in-
creasing with decreasing � � 0, and the directional derivative always
exists, cp. [11, Theorem 23.1].

If C is a subset of a Hilbert space with inner product h�; �i, it is well
known that

Df(x̂; x) = hrf(x̂); x� x̂i;

whenever rf , the derivative of f (see [11, Sec. 25]) exists.
Optimum points are characterized by directional derivatives as fol-

lows, for a proof see [10].

Proposition 2: Let C be a convex set and f : C ! a con-
cave function. Then the maximum of f is attained at x̂ if and only if
Df(x̂; x) � 0 for all x 2 C.

IV. DIRECTIONAL DERIVATIVES OF MUTUAL INFORMATION

Following the arguments in [1], the mutual information for the linear
Gaussian noise channel (1) is upper bounded by

I(xxx; yyy) = H(yyy)�H(nnn) � log det(IIIr +HHHQQQHHH�)

with equality if xxx � SCN(0;QQQ). Hence, the capacity of vector channel
(1) subject to mean power constraints (2) is derived as the maximum of
the mutual information over all admissible input distributions of xxx as

C = max
QQQ2Q

I(xxx; yyy) = max
QQQ2Q

log det(IIIr +HHHQQQHHH�):

In the following we characterize the covariance matrix Q̂QQ which
achieves capacity by using directional derivatives of the function

f : Q ! : QQQ 7! log det(IIIr +HHHQQQHHH�):

From Ky Fan’s inequality ([12, Lemma1]) it follows immediately that
f is concave whenever its domain Q is convex.

Proposition 3: Let Q be convex and Q̂QQ;QQQ 2 Q. The directional
derivative of f at Q̂QQ in the direction of QQQ is given by

Df(Q̂QQ;QQQ) = tr HHH�(IIIr +HHHQ̂QQHHH�)�1HHH(QQQ� Q̂QQ) : (7)

Proof: We exploit the chain rule for real valued functions g(XXX)
where the matrix XXX is itself a function of a scalar �,

dg

d�
= tr

dg

dXXX

dXXX

d�

�

:

Furthermore, we utilize that d
dXXX

detXXX = (detXXX)(XXX�1)�, cf. [13].
Hence,

d

d�
f(Q̂QQ+ �(QQQ� Q̂QQ))

=
d

d�
log det IIIr +HHHQ̂QQHHH� + �HHH(QQQ� Q̂QQ)HHH�

= tr (IIIr +HHHQ̂QQHHH� + �HHH(QQQ� Q̂QQ)HHH�)�1

�HHH(QQQ� Q̂QQ)HHH� :

Setting � = 0 and cyclically interchanging HHH� in the trace yields
representation (7)

Representation (7) demonstrates that the directional derivative is
linear inQQQ�Q̂QQ. From [11, Th.25.2] we conclude that f is differentiable
at Q̂QQ in the Hilbert space of all complex t � t matrices endowed with
the inner product hAAA;BBBi = tr(AAABBB�), see [14, p.286]. Furthermore,
the gradient is given by

rf(Q̂QQ) = HHH�(IIIr +HHHQ̂QQHHH�)�1HHH: (8)

V. CAPACITY FOR p-NORM CONSTRAINTS

To achieve capacity subject to the power constraint specified by the
set Q one must maximize f(QQQ) over the set of possible power assign-
mentsQ. According to Proposition 2 the point Q̂QQmaximizes f(QQQ) over
some convex set Q if and only if Df(Q̂QQ;QQQ) � 0 for all QQQ 2 Q. By
(7) this leads to

tr HHH�(IIIr +HHHQ̂QQHHH�)�1HHHQQQ � tr HHH�(IIIr +HHHQ̂QQHHH�)�1HHHQ̂QQ

(9)

for all QQQ 2 Q. Hence, we obtain the following proposition.

Proposition 4: maxQQQ2Q F (QQQ) is attained at Q̂QQ if and only if Q̂QQ is a
solution of

max
QQQ2Q

tr rf(Q̂QQ)QQQ : (10)

Power constraints from matrix p-norms are considered in the fol-
lowing. For a given 1 � p � 1 they are defined on the set of nonneg-
ative Hermitian t � t matrices as

kAAAkp =

t

i=1

�pi (AAA)

1=p

where �i(AAA), i = 1; . . . ; t, denote the eigenvalues of AAA.
Sum power constraints are contained as the special case p = 1. Max-

imizing capacity here follows the well known water-filling principle,
where the solution is obtained by water filling onto the inverse positive
eigenvalues ofHHH�HHH; cf. [1]. The opposite extreme p = 1 corresponds
to maximum eigenvalue constraints, since limp!1 kAAAkp = �max(AAA),
the maximum eigenvalue of AAA. The optimum solution in this case is a
multiple of the identity matrix, cf. [6].

For general 1 � p � 1 and L > 0 the constraining set is given by

Qp;L = fQQQ � 0 j kQQQkp � Lg:

We use the notation QQQ � 0 to indicate QQQ Hermitian nonnegative
definite.

The corresponding maximum in (10) can be explicitly determined as
follows.

Proposition 5: Let p; q � 1 be conjugate, i.e., 1
p
+ 1

q
= 1. Then

max
QQQ�0;kQQQk �L

tr rf(Q̂QQ)QQQ = Lkrf(Q̂QQ)kq: (11)

To see this we exploit the fact that tr(AAABBB) � �(i)(AAA)�(i)(BBB) for
the ordered eigenvalues of the nonnegative definite Hermitian matrices
AAA andBBB, see [9, H.1.g, p. 248]. Together with Hölder’s inequality and
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the fact that kQQQkp � L over Qp;L the following chain of inequalities
is obtained:

max
QQQ2Q

tr rf(Q̂QQ)QQQ

� max
QQQ2Q

t

i=1

�(i) rf(Q̂QQ) �(i)(QQQ)

�

t

i=1

�q(i) rf(Q̂QQ)

1=q

max
QQQ2Q

t

i=1

�p(i)(QQQ)

1=p

� Lkrf(Q̂QQ)kq:

In the case p; q > 1 equality holds if �(i)(QQQ) = ��q�1(i) rf(Q̂QQ) ,

QQQ has the same system of unitary eigenvectors asrf(Q̂QQ), and� is such
that kQQQkp = L. If p = 1, then equality holds if QQQ = Lvvvvvv�, where

vvv denotes a normalized eigenvector corresponding to �max rf(Q̂QQ) .
If p =1, equality holds for QQQ = LIIIt. In summary, (11) follows.

Now, in combining Propositions 4 and 5, we get

Proposition 6: Let p; q � 1 be conjugate. Capacity, i.e.,
maxQQQ2Q f(QQQ) is attained at power distribution Q̂QQ 2 Qp;L if
and only if

Lkrf(Q̂QQ)kq = tr rf(Q̂QQ)Q̂QQ : (12)

Once we can solve the above equation for Q̂QQ, an optimum power
allocation is found. For this purpose let

HHH = UUU���1=2VVV �

denote the singular value decomposition of the channel matrix HHH with
unitary (r� r) matrix UUU , unitary (t� t) matrix VVV , and (r� t) matrix
��� 1=2 containing the diagonal matrix of singular values in the upper left
corner and zeros elsewhere. Let i denote the identical positive eigen-
values of HHHHHH� and HHH�HHH , augmented by zeros whenever appropriate.

In the following, we try to find a solution of (12) in the class of power
allocations:

Q̂QQ = VVV diag(q̂1; . . . ; q̂t)VVV
�; q̂i � 0;

i

q̂pi

1=p

� L:

The first step is to evaluate (12) for Q̂QQ of the above type. It is easy to
see that the following representations hold:

Lkrf(Q̂QQ)kq =L

t

i=1

i
1 + i q̂i

q 1=q

(13)

tr rf(Q̂QQ)Q̂QQ =

t

i=1

iq̂i
1 + iq̂i

: (14)

We first single out the case p = 1 with kQ̂QQk1 = maxi q̂i. Then,
equality of (13) and (14) holds if q̂i = L for all i = 1; . . . ; t with i >
0, and q̂i = 0, otherwise. Note that for i = 0 any other qi 2 [0; L]
ensures equality and yields an admissible solution as well.

In the case p = 1 let q̂i = (� � 1=i)
+, � such that t

i=1 q̂i = L.
Some algebra shows that in this case (13) and (14) have the same value
L=� and hence are equal.

For general 1 < p < 1, let q̂i � 0 be such that

�i
1 + iq̂i

= q̂p�1i (15)

for all i = 1; . . . ; t, for some � > 0 satisfying

t

i=1

q̂pi

1=p

= L: (16)

By Hölder’s inequality

t

i=1

iq̂i
1 + i q̂i

�

t

i=1

q̂pi

1=p t

i=1

i
1 + iq̂i

q 1=q

:

Applying (16), we obtain that (13) equals (14).
For positive i (15) can equivalently be written as q̂pi +

1

q̂p�1i = � .

In summary, we have proven the following central result.

Theorem 7: For 1 < p < 1 let q̂i � 0, i = 1; . . . ; t, denote the
unique solution of the system of equations

q̂i =0; if i = 0

q̂pi +
1

i
q̂p�1i = �; if i > 0; � such that

t

i=1

q̂pi

1=p

= L: (17)

For the limiting case p = 1, it holds that

q̂i = � �
1

i

+

; � such that
t

i=1

q̂i = L: (18)

In the case p = 1 let q̂i = L for all i = 1; . . . ; t with i > 0, and
q̂i = 0, otherwise.

Then, for any 1 � p � 1

Q̂QQ = VVV diag (q̂1; . . . ; q̂t)VVV
�

is a solution of

max
QQQ�0;kQQQk �L

log det(III +HHHQQQHHH�)

and hence represents an optimal power assignment.
The function qpi + 1


qp�1i is monotone in qi for any p > 1; thus, a

solution of (17) always exists for any L > 0. Observe that except for
the case p = 1 all positive eigenvalues i receive a positive amount of
power.

A graphical solution of Proposition 7 is represented in Fig. 2. The
solid, dotted, and dashed lines correspond to values p = 2 and 1 = 4,
2 = 3, 3 = 2, and � is set to 0:4. The optimum arguments can be
read off from the x-axis as 0.52, 0.48, and 0.43, respectively.

The well known water-filling solution (18) is nicely obtained as a
special limiting case of (17) in Theorem 7. This fact is illustrated by
the curves plotted in Fig. 3. The curves are analogous to those in Fig. 2,
but the p-values are now set to p = 2:5; 1:33; 1:000001 (from right
to left). For p = 1 the corresponding q̂-values are 0:00; 0:067; 0:15,
respectively, exactly those obtainable from classical water-filling.

VI. A NUMERICAL ALGORITHM

We provide a fast quadratically convergent algorithm for finding nu-
merical solutions to the system of (17). It consists of nested Newton
iterations of the general type xn+1 = xn � f(xn)=f

0(xn), useful for
finding a solution x of f(x) = 0. On the one hand, the inverses g�1i (�)
of the monotone functions

gi(x) = xp +
1

i
xp�1; x � 0
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Fig. 2. The curves q̂ + q̂ = for p = 2,  = 4 (solid),  = 3 (dotted),
 = 2 (dashed). � = 0:4 corresponds to the optimum power assignments
indicated by q̂ on the x-axis.

Fig. 3. Visualizing the limiting case q̂ + q̂ = as p ! 1. Further values
are  = 4 (solid),  = 3 (dotted),  = 2 (dashed). � = 4 leads to the
optimum water-filling solution q̂ indicated on the x-axis.

are determined, on the other hand a zero of the monotone function

H(�) =
i

g�1
i (�)

p
� Lp; � � 0

is found, where the summation is over all indices i with i > 0. The
first task is solved for � = �(n) by the iteration

x
(n)
i;k+1 =x

(n)
i;k �

x
(n)
i;k

p

+ x
(n)
i;k

p�1

=i � �(n)

p x
(n)
i;k

p�1

� (p� 1) x
(n)
i;k

p�2

=i

k 2 0 (19)

for indices i with positive i.
The outer iteration uses

H 0(�) =
i

p g�1
i (�)

p�1
g�1
i

0

(�)

=
i

1

1 + p�1
p

g�1
i (�)

�1

to update �(n) as

�(n+1) = �(n) �
H(�(n))

H 0(�(n))
; n 2 0:

Fig. 4. Optimum values q̂ , q̂ , q̂ as a function of p 2 [1; 3] for parameters
L = 2 and  = 4,  = 3,  = 2.

As an initial value in the iteration (19) we choose x(n)i;0 = g�1
i (�n�1)

from the previous step, which yields excellent convergence results
(eight digits accuracy after four to six iterations), provided the outer
initial value �0 and the initial values for computing g�1

i (�(0)) are
appropriately chosen. Global convergence can be achieved by using
the Newton–Dogleg Method instead of Newton’s Method, see [15].

We have used the above algorithm to compute the optimum values
q̂1, q̂2, q̂3 as a function of parameter p 2 [1; 3] for L = 2 and channel
eigenvalues 1 = 4, 2 = 3, 3 = 2. The resulting curves are plotted
in Fig. 4. There is numerical evidence that each tends monotonically to
L (in this case, L = 2) as p ! 1. From this evidence, it seems that
asymptotically jq̂i � q̂j j tends to zero. However, in cases p = 1 and
small values of L some of the q̂i may be identically zero as is known
from sum power constrained water-filling. A strict demonstration of
the apparent fact that the solutions are less spread out for increasing p
is still an open question, although it certainly accords with the known
solution when p = 1.

VII. CONCLUSION

The central topic of the present correspondence is the derivation of
the capacity of Gaussian vector channels over a general constraining
class of power assignments. Constraints are expressed by bounding
the p-norm of the vector of eigenvalues of the power matrix. Direc-
tional derivatives are used to identify optimal solutions. The well
known water-filling principle turns out as a special limiting case when
p = 1. The investigations for general p > 1 allow for the approximate
handling of the case when the standard sum power constraint is accom-
panied by power constraints on the individual vector components. We
also provide a fast quadratically convergent algorithm for determining
numerical solutions. There is numerical evidence that for increasing p
the optimum solutions are monotonically increasing and less spread
out.

APPENDIX

A direct proof of the main result by using KKT theory was suggested
by a reviewer. We give a brief outline of this alternative method here.
The problem

max log det(III +HHHQQQHHH�) such that QQQ � 0; kQQQkp � L

is a convex optimization problem since the objective function is con-
cave and the constraint set is convex (see Section IV). For reasons of
differentiability we exclude the easy case p = 1, hence assuming
1 � p < 1 in the following.
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The Hermitian matrices QQQ and UUU�QQQUUU have the same eigenvalues
for any unitary matrix UUU . Hence, following the arguments in [1] the
problem may be equivalently reduced to

max

t

i=1

log(1 + iqi) such that qk � 0;

t

i=1

qpi � Lp

where i � 0, i = 1; . . . ; t, denote the eigenvalues
of HHH�HHH , corresponding to the spectral decomposition
HHH�HHH = VVV diag(1; . . . ; t)VVV

� for some unitary matrix VVV .
The optimal solution Q̂QQ to the original problem is obtained as
Q̂QQ = VVV diag(q̂1; . . . ; q̂t)VVV

� from the optimal solution (q̂1; . . . ; q̂t) of
the reduced problem.

Again, the reduced problem is a convex optimization problem which
can be solved via the KKT optimality conditions, see [16]. The La-
grangian is given by

L(qqq; ���; �) =

t

i=1

log(1 + iqi) +

t

i=1

qi�i + � Lp
�

t

i=1

qpi

with the notation qqq = (q1; . . . ; qt) and ��� = (�1; . . . ; �t). The opti-
mality conditions are (cf. [16, Ch. 5.5.3])

@L(qqq; ���; �)

@qk
=

k
1 + kqk

+ �k � �pqp�1k = 0

qk; �k � 0; k = 1; . . . ; t

�kqk =0; k = 1; . . . ; t

Lp
�

t

i=1

qpi =0:

If k > 0 we can solve these equations through the following chain
of transformations.

k
1 + kqk

= �pqp�1k � �k

kq
1�p

k

1 + kqk
= �p� �kq

1�p

k

1 + kqk
k

qp�1k =
1

�p

qpk +
1

k
qp�1k = �

with � = 1=(�p). If k = 0 we set qk = 0, and select � = 1=(�p)
such that t

i=1
qpi = Lp. We have thus obtained a solution to the KKT

optimality conditions, which corresponds exactly to conditions (17) in
Theorem 7.
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