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Abstract

In this paper, we present algorithms for in-situ calibration of

sensor networks for distributed detection in the parallel fusion

architecture. The wireless sensors act as local detectors and

transmit preliminary detection results to an access point or

fusion center for decision combining. In order to implement

an optimal fusion center, both the performance parameters of

each local detector (i.e., its probability of false alarm and

probability of miss) as well as the wireless channel conditions

must be known. However, in real-world applications these

statistics may be unknown or vary in time. In our approach, the

fusion center receives a collection of labeled samples from the

sensor nodes after deployment of the network and calibrates

the impact of individual sensors on the final detection result.

In the case that local sensor decisions are independent, we

employ maximum likelihood parameter estimation techniques,

whereas in the case of arbitrarily correlated sensor outputs, we

use the method of kernel smoothing. The obtained fusion rules

are both asymptotically optimal and show good performance

for finite sample sizes.

1. INTRODUCTION

Important applications of wireless sensor networks include

the detection of targets in the monitored environment for

surveillance purposes, e.g., as a prerequisite for tracking

[1]. The wireless sensor nodes typically operate on limited

energy budgets and are consequently subject to communication

constraints, resulting in a finite number of bits each sensor

node can transmit to the data sink before it runs out of power.

In order to extend sensor network lifetime, preprocessing of

measured raw data at the sensors and transmission of summary

messages is recommended. In the parallel fusion architecture,

the sensor nodes process their observations independently and

make preliminary decisions about the state of the observed en-

vironment. The sensors transmit the local decisions to a fusion

center that combines the received messages and computes the

final decision. In the case that the state of the environment is

indicated by a binary variable, the problem of designing the

local sensor compression rules and the fusion rule with respect

to an overall performance criterion is called the problem of

distributed detection.

Distributed detection is a well-developed field of research

that traces back to the early work of Tenney and Sandell [2].

Over the last two and a half decades, the problem of distributed

detection has been analyzed under a plethora of different

aspects concerning performance criteria, network topologies,

and communication schemes [3], [4]. Despite the host of

investigated scenarios, the majority of the literature relies on

strong assumptions with respect to the underlying statistical

model, e.g., explicit knowledge of the performance parameters

of the local detectors as well as the correlations between

local detector outputs. In the area of wireless sensor networks,

these assumptions may become infeasible because one encoun-

ters random deployment of sensor nodes and heterogeneous

sensing environments. In such scenarios, detailed knowledge

of the underlying statistical model may not be available for

system design. To tackle these difficulties, in-situ calibration

approaches are recommended which facilitate configuration of

sensor networks for detection applications on the spot.

A suitable framework for the design of in-situ calibration

algorithms for distributed detection in sensor networks is the

field of supervised learning [5]. Supervised learning refers

to learning from labeled samples of the underlying unknown

probability distribution. Instead of determining the system

in advance relying on prior knowledge, the deployed sen-

sor network undergoes a learning phase in which unknown

quantities are learnt from a recorded training set. In this

paper, we introduce algorithms for in-situ calibration of sen-

sor networks for distributed detection in the parallel fusion

architecture based on supervised learning. We distinguish two

cases, depending on whether local sensor detection results

are correlated or not. Under the assumption of conditionally

independent sensor decisions, we employ maximum likelihood

parameter estimation to implement a fusion center which

asymptotically achieves minimum probability of error. In the

case of arbitrarily correlated sensor decisions, we use the

method of kernel smoothing. Using suitable discrete kernel

functions and computing the right smoothing parameters,

this method also results in fusion rules which asymptotically

provide optimal detection performance for any distribution.

The remainder of this paper is organized as follows. In

Section 2, the problem of distributed detection in the parallel

fusion network with noisy communication links is stated. In

Section 3, we formulate the in-situ calibration algorithm for

conditionally independent local sensor decisions. In-situ cali-

bration of the sensor network in the general case of correlated

sensor decisions is discussed in Section 4. In Section 5, we

present numerical results obtained by Monte Carlo simulation

and we conclude in Section 6.
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Fig. 1: Parallel fusion network with noisy communication links.

2. PARALLEL FUSION NETWORK WITH NOISY

COMMUNICATION LINKS

The problem of distributed detection in the parallel fusion

network with noisy communication links is as follows (see

Fig. 1). We consider a binary hypothesis testing problem with

hypotheses H0 and H1 indicating the state of the observed

environment, e.g., absence or presence of a target. The actual

state of the environment is described by a binary-valued

random variable Y ∈ {0, 1} and associated prior probabilities

π0 = P (H0) = P (Y = 0),

π1 = P (H1) = P (Y = 1).
(1)

In order to infer the true state of nature, a network ofN sensors
S1, ..., SN collect measurement data generated according to

either H0 or H1, the two hypotheses under test. Each sensor

processes its observation independently and makes a prelimi-

nary decision about the true hypothesis before sending it to a

fusion center. In the case that every wireless sensor is allowed

to transmit one bit per observation, the sensor decisions are

binary-valued random variables Uj ∈ {0, 1}, j = 1, ..., N .
The resulting detection error probabilities for each sensor are

given by the local probability of false alarm Pfj
and the local

probability of miss Pmj
according to

Pfj
= P (Uj = 1|H0), (2)

Pmj
= P (Uj = 0|H1), (3)

for j = 1, ..., N . Upon local detection, the sensor nodes
transmit an array of local decisions

U = (U1, ..., UN ) ∈ {0, 1}N (4)

to the fusion center in order to perform decision combining.

The communication links between the wireless sensors and

the fusion center may be subject to noise. Due to noisy

communication channels, the fusion center receives an array

of potentially distorted decisions

Ũ = (Ũ1, ..., ŨN ) ∈ {0, 1}N . (5)

We follow an approach suggested by Ferrari and Pagliari [6]

and model the communication link between sensor Sj and

the fusion center by a binary symmetric channel (BSC) with

bit-error probability εj , i.e.

εj = P (Ũj = 1|Uj = 0) = P (Ũj = 0|Uj = 1) (6)

for j = 1, ..., N . The received decisions are combined to yield
the final decision U0 = γ(Ũ1, ..., ŨN ), where the fusion rule
γ is a binary-valued mapping

γ : {0, 1}N → {0, 1}. (7)

The sensor network detection performance is measured in

terms of the global probability of error

Pe = P (γ(Ũ) 6= Y )

= π0Pf + π1Pm

(8)

which can be written as a weighted sum of the global probabil-

ity of false alarm Pf = P (U0 = 1|H0) and the corresponding
global probability of miss Pm = P (U0 = 0|H1). Since the
decision fusion problem can be viewed as a hypothesis testing

problem with local detection results being the observations, the

Bayes optimal fusion rule γ∗ takes the form of a likelihood

ratio test

p(ũ|H1)

p(ũ|H0)

1
≷

0

π0

π1
, (9)

where p(ũ|Hk) = p(ũ1, ..., ũN |Hk) is the probability mass
function of the received decision vector Ũ = (Ũ1, ..., ŨN )
under hypothesis Hk, k = 0, 1. The minimum probability of
error associated with the optimal fusion rule (9) is given by

the Bayes risk

P ∗
e = P (γ∗(Ũ) 6= Y ). (10)

3. IN-SITU CALIBRATION FOR INDEPENDENT SENSORS

VIA PARAMETER ESTIMATION

In this section we will introduce in-situ calibration of sensor

networks in the special case that the local detection results at

the sensors are conditionally independent given the underlying

hypothesis. Using maximum likelihood parameter estimation,

we obtain Bayes risk consistent fusion rules which asymptot-

ically achieve minimum detection error.

A. Distribution of received detection results

Under the assumption of conditional independence, the proba-

bility mass functions of the decision vector U = (U1, ..., UN )
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factorize and take the form

p(u1, ..., uN |H0) =

N∏

j=1

P
uj

fj
(1 − Pfj

)1−uj , (11)

p(u1, ..., uN |H1) =

N∏

j=1

P 1−uj
mj

(1 − Pmj
)uj . (12)

Since the decision vector U is transmitted over noisy channels,

the fusion center receives a potentially distorted vector Ũ . If

the noisy channels are modeled by BSCs as formulated in

(6), a little computation yields the transformed detection error

probabilities

P̃fj
= P (Ũj = 1|H0) = Pfj

+ εj(1 − 2Pfj
), (13)

P̃mj
= P (Ũj = 0|H1) = Pmj

+ εj(1 − 2Pmj
). (14)

The distribution of the distorted decision vector Ũ is obtained

by plugging expressions (13) and (14) into equations (11) and

(12), respectively. This results in the conditional probability

mass functions

p(ũ1, ..., ũN |H0) =

N∏

j=1

P̃
euj

fj
(1 − P̃fj

)1−euj , (15)

p(ũ1, ..., ũN |H1) =

N∏

j=1

P̃ 1−euj
mj

(1 − P̃mj
)euj , (16)

describing the distribution of received detection results.

B. Optimal channel-aware fusion rule

Inserting expressions (15) and (16) into the Bayes optimal

fusion rule (9), and after some transformations, the optimal

fusion rule γ∗ can be implemented by a linear threshold rule

N∑

j=1

λj ũj

1
≷

0
ϑ (17)

with individual sensor weights

λj = log

(
(1 − P̃fj

)(1 − P̃mj
)

P̃fj
P̃mj

)
(18)

for j = 1, ..., N , and a decision threshold

ϑ = log

(
π0

π1

N∏

j=1

1 − P̃fj

P̃mj

)
. (19)

In order to perform optimal fusion of the received local

detection results, the numerical values of the weights (18) and

the threshold (19) have to be available at the fusion center. If

both the prior probabilities (1), the original sensor detection

error probabilities (2) and (3), as well as the bit-error rates of

the BSCs (6) would be perfectly known, the sensor weights

and the decision threshold could be computed. However, in

real-world scenarios knowledge about those quantities may

not be available, necessitating in-situ methods for system

calibration.
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ũi1

��
��
SN

s
�

��
��
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Fig. 2: Sensor nodes S1, ..., SN transmitting the components of the decision
vector eui = (eu1, ..., euN ) to the fusion center (FC).

C. In-situ calibration of the fusion rule

As an operational requirement for in-situ calibration, the fusion

center receives a certain number of decision vectors from the

sensor nodes after deployment of the network (see Fig. 2).

During this phase, each of the decision vectors is assumed to

be labeled with the true underlying hypothesis by an external

observer. Formally, we assume that a set

Dn = {(ũi, yi)}
n
i=1 ⊂ {0, 1}N × {0, 1} (20)

of potentially distorted decision vectors ũi ∈ {0, 1}N labeled

with the true underlying hypothesis yi ∈ {0, 1} is available at
the fusion center.

In-situ calibration of the fusion rule (17) essentially involves

assessing the sensor weights λ1, ..., λN and the decision

threshold ϑ by using the empirically obtained set Dn. We take

the approach of computing the maximum likelihood estimates

P̂fj
and P̂mj

of P̃fj
and P̃mj

, respectively, which are obtained

after a little calculation as

P̂fj
=

∑n

i=1 ũij
· (1 − yi)

n −
∑n

i=1 yi

,

P̂mj
=

∑n

i=1(1 − ũij
) · yi∑n

i=1 yi

,

(21)

for j = 1, ..., N , where ũij
denotes the j-th component of

the decision vector ũi = (ũi1 , ..., ũiN
). We estimate the prior

probabilities by

π̂0 =
n −

∑n

i=1 yi

n
, π̂1 =

∑n

i=1 yi

n
. (22)

We use these expressions to form the plug-in fusion rule

N∑

j=1

λ̂j ũj

1
≷

0
ϑ̂ (23)

by defining

λ̂j = log

(
(1 − P̂fj

)(1 − P̂mj
)

P̂fj
P̂mj

)
(24)
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for j = 1, ..., N , and

ϑ̂ = log

(
π̂0

π̂1

N∏

j=1

1 − P̂fj

P̂mj

)
. (25)

It can be shown that the resulting plug-in fusion rule (23) is

universally consistent, i.e., its probability of error Pe converges

to the minimum probability of error P ∗
e of the theoretically

optimal fusion rule (17) with probability one as the size of

the training set Dn tends to infinity [7].

4. IN-SITU CALIBRATION FOR CORRELATED SENSORS

VIA KERNEL SMOOTHING

If we remove the assumption that local sensor detection results

are conditionally independent given the underlying hypothesis,

the probability distribution of the received decision vector

Ũ = (Ũ1, ..., ŨN ) will lose its convenient parametric form
as stated in (15) and (16). In general, the joint distribution

of a vector of N binary variables is characterized by 2N − 1
parameters corresponding to the 2N different observations that

can be obtained. For large N , this results in a prohibitive
amount of necessary training data for parameter estimation. In

the distributed detection literature, the problem of correlated

sensors was tackled by allowing only the presence of special

kinds of correlations between the local decisions [8], [9].

In order to cope with arbitrary correlation structures, we use

an extension of kernel smoothing to multivariate binary spaces

which was introduced by Aitchison and Aitken [10]. Doing so,

we allow the training data itself to determine the correlation

structure of the multivariate binary distribution, paving the way

for universally consistent fusion rules.

A. Estimation with discrete kernels

As in the case of independent sensors, we assume that a

training set

Dn = {(ũi, yi)}
n
i=1 ⊂ {0, 1}N × {0, 1} (26)

of correctly labeled but possibly distorted sensor decision

vectors ũi ∈ {0, 1}N is available at the fusion center. We

use the training set Dn in combination with a discrete kernel

functionK : {0, 1}N → R to form estimates of the conditional

probability mass functions p(ũ|Hk) according to

p̂(ũ|H0) = p̂(ũ|Dn0
) =

1

n0

n∑

i=1

I{yi=0}K(ũ|ũi,λ0), (27)

p̂(ũ|H1) = p̂(ũ|Dn1
) =

1

n1

n∑

i=1

I{yi=1}K(ũ|ũi,λ1), (28)

where Dnk
⊂ Dn is the subset of decision vectors with label

k, nk is the number of decision vectors in the set Dnk
, and

λk = (λk1
, ..., λkN

) is a vector of smoothing parameters for
k = 0, 1. The kernel-based estimates (27) and (28) are plugged
into the Bayes optimal rule (9), yielding the fusion rule

p̂(ũ|H1)

p̂(ũ|H0)

1
≷

0

π̂0

π̂1
. (29)

The estimates π̂0 and π̂1 of the prior probabilities are again

chosen according to (22). For the kernel function K, we
employ a product of univariate kernels K1, ...,KN which take

the form

Kj(ũj |ũij
, λkj

) =

{
λkj

if ũj = ũij

1 − λkj
if ũj 6= ũij

, (30)

where the smoothing parameters λkj
are in the interval [12 , 1],

j = 1, ..., N . In particular, λkj
= 1

2 gives the uniform distri-

bution over {0, 1} whatever the data and λkj
= 1 estimates

probabilities by the corresponding relative frequencies. Thus,

we obtain the discrete kernel function

K(ũ|ũi,λk) =

N∏

j=1

λ
1−|euj−euij

|

kj
(1 − λkj

)|euj−euij
|. (31)

In the special case of identical smoothing parameters, i.e.,

λkj
= λk for j = 1, ..., N , the kernel function (31) simplifies

to the Aitchison-Aitken kernel

K(ũ|ũi,λk) = λ
N−dH(eu,eui)
k (1 − λk)dH(eu,eui) (32)

with dH(ũ, ũi) the Hamming distance between the binary
vectors ũ and ũi. The disadvantage of the Aitchison-Aitken

kernel lies in the fact that no discrimination between sensors

is possible, due to the uniformly chosen smoothing parameter.

B. Computing the smoothing parameters

For computing the smoothing parameters, we follow an ap-

proach due to Tutz [11] that is based on minimizing the leave-

one-out estimator for the probability of error of the fusion rule

(29), which can be written as

P̂e = 1−
(n0

n

∑

Dn0

f0(ũ)I0(ũ) +
n1

n

∑

Dn1

f1(ũ)I1(ũ)
)
. (33)

The indicator function I0(ũ) is defined by the threshold test

p̂(ũ|Dn0
\ {ũ})

p̂(ũ|Dn1
)

1
≷

0

π̂1

π̂0
(34)

and the indicator function I1(ũ) is correspondingly defined by

p̂(ũ|Dn1
\ {ũ})

p̂(ũ|Dn0
)

1
≷

0

π̂0

π̂1
. (35)

The value fk(ũ) denotes the relative frequency of the binary
vector ũ in the sample set Dnk

, k = 0, 1. Upon reception of
the training setDn, the fusion center numerically computes the

vectors of smoothing parameters λ
∗
0 and λ

∗
1 which minimize

the leave-one-out estimator for the error probability (33), i.e.

(λ∗
0,λ

∗
1) = argmin

(λ0,λ1)

P̂e(λ0,λ1). (36)

Under this choice of smoothing parameters, the resulting

fusion rule is universally consistent, i.e., its probability of error

Pe converges with probability one to the probability of error

P ∗
e of the Bayes optimal fusion rule (9) as the size of the

training set Dn tends to infinity [11].
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Fig. 3: Independent sensor decisions.

5. NUMERICAL RESULTS

In order to obtain numerical results which demonstrate the

performance of the calibration algorithms for a wide variety of

scenarios, we choose the system parameters in each simulation

run to be realizations of random variables. In particular, we

assume that both the local detection error probabilities Pfj
and

Pmj
as well as the bit-error probabilities εj of the BSCs are

chosen to be uniformly distributed on the interval [0, 1
2 ], i.e.

Pfj
∼ U(0, 1

2 ), Pmj
∼ U(0, 1

2 ), εj ∼ U(0, 1
2 ). (37)

We assume that the hypothesesH0 andH1 are equally likely to

occur, i.e., π0 = π1 = 1
2 . Naturally, the resulting probability of

error of the distributed detection system is a random variable

because the system is trained on a set of random samples. So

we calculate the probability of error by averaging over 1000
independent simulation runs for each combination of sensor

network size and number of training vectors.

A. Independent sensor decisions

First, we consider scenarios where the local sensor detection

results are independent given the underlying hypothesis. In this

case, maximum likelihood parameter estimation as described

in Section 3 can be applied resulting in optimal fusion rules

when the number of training vectors tends to infinity. However,

of particular interest is the detection performance of sensor

networks for small to medium size training sets according to

real-world conditions. Accordingly, we consider networks of

N = 10, ..., 100 sensors collecting training sets of n = 25
and n = 50 labeled samples. The numerical results depicted
in Fig. 3 show near optimal performance of our parametric

calibration approach even for moderately sized training sets.

B. Correlated sensor decisions

To simulate scenarios in which local sensor detection results

are correlated and to evaluate the calibration algorithm from

Section 4, efficient methods for generating correlated binary
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Fig. 4: Correlated sensor decisions with βj = 0.2, j = 1, ..., N .

random variables are necessary. We use a method which is

based on a model of Oman and Zucker [12]. The multivariate

binary distribution of the distorted decision vector Ũ is mod-

eled by indicator functions of underlying correlated random

variables. The thresholds used in the indicator functions cor-

respond to the error probabilities P̃fj
, P̃mj

, j = 1, ..., N , and
pairwise correlations between local sensor decisions are in-

duced by correlations between the underlying latent variables.

Formally speaking, let Z0, ..., ZN be i.i.d. continuous random

variables which are uniformly distributed on the interval [0, 1],
and let V1, ..., VN be independent binary random variables with

P (Vj = 1) = βj (38)

for j = 1, ..., N . By initially forming

Xj = VjZ0 + (1 − Vj)Zj , (39)

we define under hypothesis H0

Ũj = I(Xj ≤ P̃fj
). (40)

and under hypothesis H1

Ũj = I(Xj ≤ 1 − P̃mj
) (41)

for j = 1, ..., N , where I(·) is a binary-valued indicator
function. With these definitions, it can be shown that for the

marginal probabilities of the components of Ũ holds

P (Ũj = 1|H0) = P̃fj
,

P (Ũj = 0|H1) = P̃mj
.

(42)

Furthermore, we obtain the pairwise correlation coefficients

under hypothesis H0 according to

ρ
(0)
jl = Corr(Ũj , Ũl|H0) = βjβlτ

(0)
jl (43)

where

τ
(0)
jl = min





√√√√ P̃fj
(1 − P̃fl

)

(1 − P̃fj
)P̃fl

,

√√√√ (1 − P̃fj
)P̃fl

P̃fj
(1 − P̃fl

)



 . (44)
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Fig. 5: Correlated sensor decisions with βj = 0.4, j = 1, ..., N .

Correspondingly, under hypothesis H1 we obtain the pairwise

correlation coefficients

ρ
(1)
jl = Corr(Ũj , Ũl|H1) = βjβlτ

(1)
jl (45)

with

τ
(1)
jl = min





√√√√ P̃mj
(1 − P̃ml

)

(1 − P̃mj
)P̃ml

,

√√√√ (1 − P̃mj
)P̃ml

P̃mj
(1 − P̃ml

)



 . (46)

By varying the parameters β1, ..., βN from equation (38),

the degree of correlation between local sensor decisions can

be controlled. The simulation results depicted in Fig. 4 to

6 correspond to values of βj chosen to be 0.2, 0.4 and
0.6, respectively. If the correlation among sensors is weak
(βj = 0.2), the results resemble the ones obtained for inde-
pendent sensors although a higher number of training vectors

is necessary because the fusion center now also has to learn

the correlation structure of local sensor decisions (Fig. 4). For

larger values of βj there appears to be an overall decrease in

performance corresponding to the stronger correlation between

sensor decisions. However, it is interesting to note that the

gap between the calibrated system and the Bayes optimal one

remains approximately of constant size (Fig. 5 and 6).

6. CONCLUSIONS

The main concern of the present paper are algorithms for

in-situ calibration of sensor networks for distributed detec-

tion in the parallel fusion architecture. We distinguished two

cases, depending on whether local sensor detection results

are correlated or not. Under the assumption of conditionally

independent sensor decisions, we employed maximum like-

lihood parameter estimation in order to obtain fusion rules

which achieve minimum detection error for large training

sets. In the case of arbitrarily correlated sensor decisions, we

used a discrete version of the method of kernel smoothing.

Using suitable discrete kernel functions and computing the
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Fig. 6: Correlated sensor decisions with βj = 0.6, j = 1, ..., N .

right smoothing parameters, this procedure also resulted in

fusion rules providing optimal detection performance in the

asymptotic case. Finally, numerical results obtained by exten-

sive Monte Carlo simulations also show good performance of

the in-situ calibration algorithms for moderately sized training

sets.
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