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Abstract— Slow fading or shadowing on a wireless channel is
commonly modeled by stochastically independent, log-normally
distributed random variables. However, as slow fading is caused
by buildings and large size obstacles, spatial correlations occur.
In this paper, Gaussian random fields are used as a model for
correlated slow fading in urban environments. An exponential
correlation function is employed. The according parameters
are estimated from path gain predictions by an accurate ray-
optical propagation algorithm, named CORLA. Furthermore,
a multidimensional model is suggested to describe correlated
shadowing of the path gains from different base stations to a
single receiver.

I. INTRODUCTION

Wireless channel modeling is an important prerequisite for

the design of mobile communication systems. In this paper,

we focus on large scale fading, or shadowing, induced by the

relatively slow motion of mobiles and according attenuation,

reflection and diffraction of radio waves at buildings and other

obstacles in urban environments. The log-normal distribution,

well motivated by the central limit theorem on a dB scale, is

often used to model the path gain fluctuations. Most simula-

tions use independent log-normal random variables as a model

for slow fading over time. This comes at low computational

complexity, however, neglects correlations between samples

at close quarters. Taking the correlation structure into account

usually means high computational costs. Hence, an important

goal are computationally effective models of the spatial cor-

relation structure of slow fading in urban environments.

One of the first publications considering correlations for

shadow fading is [1]. After performing measurements, the au-

thors propose to model shadow fading as a stochastic process

with an exponential type correlation function and Gaussian

marginal distributions. The authors [2] discuss a statistical

model to generate shadow-fading which uses a precomputed

fading map. Correlations are introduced by a Gaussian random

field and parameters are computed from local measurements.

Further studies of correlated radio channels, well supported by

measurements, are presented in [3], [4], [5]. The correlation

between measurement points is described as a function of their

distance.

A general problem with measurements is that they are

commonly taken along one-dimensional routes. A measure-

ment campaign aiming at a whole map of channel gains

for an area of several square kilometers around a receiver

with high resolution is certainly impractical. However, for the

analysis of the spatial correlation structure this data is simply

needed. Shadow fading is caused by buildings and other large

obstacles. Modern three-dimensional field strength prediction

tools include such obstacles in their computations. Hence, we

suggest the use of a well calibrated field strength prediction

tool to generate the input data for parameter estimation of a

generic statistical spatial fading model.

In this work, we focus on Gaussian random fields as a

model for spatially correlated fading. Section II introduces

some basic notations, the path loss model and some parameter

estimators. In Section III, parameter estimation of the generic

stochastic model from a radio wave propagation prediction

tool is described in detail. Section IV summarizes some

basic definitions and important facts about Gaussian random

fields. Furthermore, we discuss if such fields are appropriate

for modeling spatially correlated fading. In Section V we

introduce a correlation model for the path gain of different

base stations at a single receiver. Section VI concludes the

paper with a brief outlook on open questions.

II. PATH-LOSS MODEL AND PARAMETER ESTIMATION

Assume a receiver at location x ∈ R
2 and the transmitting

base station located at the origin. Neglecting fast fading and

assuming transmit and receive antenna gains of Gt and Gr,

respectively, the path loss in dB from the base station to the

receiver is modeled by

LdB(x) = −20 log
λ

4π
−10 log(GtGr)−α10 log ‖x‖+YdB(x).

(1)

where ‖ · ‖ denotes the Euclidean norm or distance from the

origin, α the path loss exponent and YdB(x) additive log-

normal fading. We also write LdB(d), if d = ‖x‖ is the

distance of location x from the transmitter at the origin, and

ddB = 10 log d. The random variables YdB(x) are assumed

to be spatially correlated for different x. For fixed x the

marginal distribution of YdB(x) is supposed to be N(0, σ2),
i.e., Gaussian with expectation 0 and variance σ2, independent

of x.

Let yd1
, . . . , ydn

be a set of n independent observations of

LdB(d1), . . . , LdB(dn) at locations x1, . . . ,xn, and let c =
−20 log λ

4π − 10 log(GtGr) denote the constant term in (1).
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The maximum likelihood estimators α̂ and σ̂ of α and σ,

respectively, are given as

α̂ = −

∑n
i=1 ddB

i (ydi
− c)

∑n
i=1(d

dB
i )2

, (2)

σ̂ =

√

√

√

√

1

n

n
∑

i=1

(ydi
− c + α̂ ddB

i )2. (3)

This is easily derived by differentiating the log-likelihood

function w.r.t. α and σ, and determining zeros of the gradient.

Measurements in close vicinity are of course correlated. We

assume that stochastically independent samples may be drawn

by observations which are sufficiently far apart.

The above estimators are used in the next section to compute

the path-loss exponent α and hence subtract the distance

dependent part of path loss from the observations.

III. PARAMETER ESTIMATION BY RAY LAUNCHING

The main purpose of this work is to find a generic stochastic

model for spatially correlated shadowing. Estimating the pa-

rameters is a crucial point for adapting the model to realistic

scenarios. This may be done on the basis of measurements, a

way which is, however, tedious, time intensive and requires

expensive equipment. In the present approach, we instead

employ the results of an accurate radio wave propagation

tool for estimation purposes. Precise path gain predictions

are obtained from the tool CORLA [6]. The predictions have

been validated against measurements carried out by former

Mannesmann Mobilfunk GmbH, Germany (today: Vodafone

D2 GmbH, Germany) within the COST 231 project [7].

Figure 1(a) shows a CORLA prediction with a resolution

of 5 meters for the center of Munich. The measurements

displayed in Figure 1(b) have been collected on a certain

winded track araound the transmitter in Figure 1(a). The

predicted values are in excellent accordance with the measured

field strength in Figure 1(b). An extensive analysis of the

prediction accuracy is given in [6]. In summary, estimating

the parameters of a generic model from concrete path gain

predictions is well-grounded and leads to valuable results.

The path loss exponent α and the shadowing variance σ of

model (1) are now estimated by (2) and (3). The following

values are obtained

α̂ = 3.57 and σ̂ = 7.14,

in accordance with typical values resulting from measurements

in urban scenarios. Subtracting the distance dependent part

of (1) from the predictions by using α̂ leads to Figure 1(c).

This Figure hence represents a shadowing map. Red colors

indicate regions where the path gain is higher than the purely

distance dependent part. Green colors represent regions with a

low path gain due to shadowing, and white areas correspond to

regions where the path gain is in accordance with the distance

dependent value.

Figure 1(d) contains a histogram of the slow fading values

occurring in Figure 1(c)). It demonstrates that the values

compare acceptably with the density of a Gaussian N(0, σ̂2)

distribution, depicted in the same plot and assumed in model

(1). Deviations are mainly caused by discretization and round-

ing errors since CORLA only provides dB values on a discrete

scale.

In the following section we aim at adapting a generic

stochastic field model to the typical statistical properties of

spatial radio wave propagation in urban scenarios.

IV. RANDOM FIELDS AS A MODEL FOR CORRELATED

SHADOWING

A random field is a stochastic process {X(x)} where the

index x ranges over a multidimensional space, e.g., x ∈
R

n, n ≥ 2, or a subset A hereof. A comprehensive survey

of the theory and applications of random fields is provided

in [8]. Gaussian random fields as models for shadow fading

are also investigated in the work [2], however for a different

type of spatial correlation and without considering parameter

estimation.

Susequently some basic definitions are summarized in short.

We assume that occuring expectations are all well defined.

The covariance function of a random field is defined as

C(x1,x2) = E
(

X(x1)X(x2)
)

− E
(

X(x1)
)

E
(

X(x2)
)

,

the correlation function as

R(x1,x2) =
C(x1,x2)

√

V
(

X(x1)
)

√

V
(

X(x2)
)

.

A function R(x1,x2) is the correlation function of some

random field if and only if it is symmetric and nonnegative

definite.

Generalizing the concept of stationary stochastic processes

to random fields leads to the concept of homogeneous random

fields. A random field is called weak-sense homogeneous if

E
(

X(x)
)

= µ and R(x1,x2) = R(x1 − x2)

for all x,x1,x2. A weak-sense homogeneous random field is

called weak-sense isotropic if

R(x1,x2) = R(‖x1 − x2‖)

for all x1,x2. Nonnegative definiteness is also a necessary and

sufficient condition for a function R to be the the correlation

function of an isotropic random field.

Finally, a random field X(x) is called Gaussian if all finite

dimensional marginals are jointly Gaussian distributed.

An extension of model (1) to spatial parameters would be as

follows. The shadowing path gain from a transmitter located

at position b ∈ R
2 to a receiver at position x ∈ R

2 is modeled

by a random field {Gb(x)} with

Gb(x) = g(‖x − b‖) Gshad(x).

Function g(·) represents the distance dependend path gain and

further constants like antenna gains and frequency dependent

attenuation. {Gshad(x)} is a random field defined by

Gshad(x) = 10G(x)/10.
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(a) CORLA Prediction.
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(b) Comparison of measurement and prediction.
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(c) Slow fading contribution in Figure 1(a).

−30 −20 −10 0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

x [dB]

 

 

empirical distribution
fNorm(x), σ = 7 .1395

(d) Empirical distribution of the shadowing and (Log-) Normal approx-
imation.

Fig. 1. Analysis of path gain predictions in Munich, resolution 5m, frequency 947 MHz, transmitter position and building data from COST 231.

{G(x)} is assumed as a zero mean, weak sense stationary and

isotropic Gaussian random field with G(x) ∼ N(0, σ2) for all

x. Further, we assume an exponential correlation function for

{G(x)} of the form

RG(τ) = ϑτϑ2

1 (4)

with τ = ‖x1 − x2‖ and parameters ϑ1 ∈ (0, 1), ϑ2 > 0. An

exponential correlation function is also considered in [1] for

one-dimensional correlated shadow fading.

Under these model assumptions it can be shown that the

random field {Gshad(x)} is isotropic, and all one-dimensional

marginals are log-normal, i.e., Gshad(x) ∼ LogN(0, σ2) for

all x. Furthermore, the correlation function of {Gshad(x)} is

given by

RGshad
(τ) =

exp
(

(σ ln(10)/10)2ϑτϑ2

1

)

− 1

exp
(

(σ ln(10)/10)2
)

− 1
.

It remains to estimate the parameters ϑ1 and ϑ2. Resembling

the empirical correlation function of a stochastic process with

one-dimensional index space we define the estimator

R̂G,r(τ)

=
1

|Mr(τ)|

∑

(x1,x2)∈Mr(τ)

G(x1)G(x2)
√

Var(G(x1))Var(G(x2))
,

where Mr(τ) is a finite set of sample pairs

Mr(τ) = {(xi1,xi2) | ‖xi1‖, ‖xi2‖ ≤ r, ‖x1 − x2‖ = τ,

i = 1, . . . ,M(τ)},

and G(xi) are observed values of the field G at position xi.

Figure 2 depicts R̂G(x),∞(τ) for the CORLA path gain

predictions in Figure 1(a). The parameters ϑ1 and ϑ2 are

determined as the solution of the optimization problem

min
ϑ1∈(0,1), ϑ2>0

∑

τ

(

R̂G(x),∞(τ) − ϑτϑ2

1

)2

.

for a finite set of points τ .

Solving this problem for the exponential correlation func-

tion yields

ϑ̂1 = 0.9966 and ϑ̂2 = 0.9682.

155



0 500 1000 1500 2000
−0.2

0

0.2

0.4

0.6

0.8

d [m]

R
(d

)

 

 

empirical
exponential: ϑ1 = 0.9966, ϑ2 = 0.9682

Fig. 2. Empirical correlation function and its approximation for the situation
depicted in Figure 1(a).
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Fig. 3. Gaussian random field with exponential correlation function (4) and
parameters σ = 7.14, ϑ1 = 0.9966 and ϑ2 = 0.9682.

yielding an acceptable approximation depicted in Figure 2. De-

viations between the approximation and the empirical function

for large distances may be explained by the fact that only a

few points with a distance of more than 1000 m occur in the

considered scenario. Furthermore, the correlation function is

consistent with results obtained in the one-dimensional case,

see [1].

Efficient algorithms for creating samples of Gaussian ran-

dom fields are available, see [9]. Figure 3 depicts a realization

of {G(x)} for the above estimated parameter values using the

tools from [9]. Structural similarities between the prediction

in Figure 1(c) and the Gaussian random field in Figure 3 are

clearly observable. Connected regions of positive or negative

fading for example tend to be of similar size in both pictures.

Figure 4 depicts the distance dependent path loss together with

correlated shadow fading, i.e., g(‖x − b‖) Gshad(x) on a dB

scale. This figure represents a sample output of the considered

channel model excluding fast fading.

Observe that the data is generated on the basis of a generic

stochastic model and does not take account of concrete build-

ing data. It hence must not be expected that a typical urban

-160 dB

-140 dB

-120 dB

-100 dB

-60 dB

-80 dB

-40 dB

Fig. 4. Path gain including the distance dependent part and the shadow fading
generated by a Gaussian random field with exponential correlation function (4)
and parameters α = 3.57, σ = 7.14, ϑ1 = 0.9966 and ϑ2 = 0.9682.

path gain pattern of the type in Figure 1(a) is generated.

V. CORRELATIONS BETWEEN BASE STATIONS

So far, we have considered spatial correlations in the path

gain at different receiver positions from the same base station.

However, for handoff analysis purposes correlations between

the channel gains from different base stations to a single

receiver location are of particular interest. Models for this

type of correlations are an active area of research, e.g., within

the IST Information Society Technologies-WINNER Wireless

World Initiative New Radio II project [10]. We present a

first modeling approach, which will be enhanced by spatial

correlation components in the future.

As in the work [11], we consider only the distance depen-

dent path gain and shadow fading. Assume K base stations

at distances d1, . . . , dK from a receiver. The path gains are

described by the random vector

Gd1,...,dK

=
(

g(d1) Gshad,1 Gshad,cor, . . . , g(dK) Gshad,K Gshad,cor

)′

with g(·) defined as above and K + 1 stochastically inde-

pendent random variables Gshad,k, k = 1, . . . ,K. We further

assume that

Gshad,cor ∼ LogN(0, σ2
c )

Gshad,k ∼ LogN(0, σ2
i )

for k = 1, . . . ,K. The random variable Gshad,cor creates the

correlation between different stations, whereas Gshad,k, k ∈
{1, . . . ,K} models stochastically independent contributions to

the path gain. To be consistent with the model introduced in

Section II we require that

Gshad,k Gshad,cor ∼ LogN(0, σ2)

for k = 1, . . . ,K, that is,

σ2 = σ2
i + σ2

c .

Thus, there is an η ∈ [0, 1] with σ2
i = (1−η)σ2 and σ2

c = η σ2.

In [11] the value η = 1/2 was suggested.
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VI. CONCLUSIONS AND OUTLOOK

Gaussian random fields are a valuable model for the

simulation of spatially correlated log-normal fading. Even

for the simple case of isotropic correlation functions, good

approximatons have been obtained in this work. Comparing

random fading maps with predicted ones, structural similarities

have been detected. Future work will be devoted to including

non isotropic correlation functions. Furthermore correlations

between base stations will be extended by a spatial component

in subsequent work. Finally, we will integrate the present

model into a full simulation environment which supports

investigating channel impairments and upper layer aspects for

moving stations in complicated correlated fading scenarios.
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