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Abstract

Using the concept of discrete noiseless channels, it was
shown by Shannon in A Mathematical Theory of Com-
munication that the ultimate performance of an en-
coder for a constrained system is limited by the combi-
natorial capacity of the system if the constraints define
a regular language. In the present work, it is shown
that this is not an inherent property of regularity but
holds in general. To show this, constrained systems are
described by generating functions and random walks on
trees.

1. INTRODUCTION

A constrained system allows the transmission of in-
put sequences of weighted symbols that fulfill certain
constraints on the symbol constellations. Constrained
systems have been of recent interest, e.g., in the context
of storage systems [1]. A natural question is how to effi-
ciently encode a random source such that it becomes a
valid input for a constrained system [2]. Furthermore,
it is of interest to determine the ultimate performance
of such an encoder. This leads to the notion of the
capacity of constrained systems.

Previous work: Shannon [3] investigated the ca-
pacity of constrained systems within the framework
of the discrete noiseless channel (DNC). For the case
where the constraints form a regular language [4], it
was stated in [3, Theorem 8] that the maximum en-
tropy rate R of a valid input process is equal to the
combinatorial capacity C, which is defined as

C = lim sup
ν→∞

lnN(ν)

ν
(1)

where ν denotes the length of the sequences and N(ν)
denotes the number of distinct sequences of length ν
that are accepted by the considered DNC. Here and

hereafter, ln denotes the natural logarithm. A detailed
proof of the equality between R and C was recently
given in [5]. This proof is heavily based on the reg-
ularity of the constraints. However, it is not clear
whether this equality is an inherent property of reg-
ular languages or whether it holds in general. It should
be noted that sequences with non-regular constraints
have been of research interest recently, e.g., in [6]. An
early treatment of DNCs can be found in [7].

Contributions: In this paper, we use the framework
of general DNCs as introduced in [8] to show the follow-
ing. If the set of valid input sequences for a constrained
system can be generated by a Markov process, then the
maximum entropy rate of such a process is given by
the combinatorial capacity of the system, irrespective
of whether the constraints are regular or not. Our re-
sult can be seen as a generalization of Shannon’s result
[3, Theorem 8] to general DNCs and in particular non-
regular DNCs. Furthermore, since our derivations also
apply for the regular case, they also serve as a new way
to derive [3, Theorem 8].

The remainder of the paper is organized as follows.
In Section 2, we present the framework of general DNCs
and the calculation of combinatorial capacities by gen-
erating functions as introduced in [8]. We then define
in Section 3 Markovian input processes and entropy
rates for general DNCs. In Section 4, we define the
maximum entropy rate R of general DNCs and for sake
of illustration, we show for two simple examples that
R is equal to the combinatorial capacity C. Finally, in
Section 5 we prove that R = C holds for general DNCs.

2. DISCRETE NOISELESS CHANNELS

To calculate the combinatorial capacity of general
DNCs, we interpret generating functions as functions
on the complex plane and investigate their convergence
behavior. This approach, mostly referred to as analytic



combinatorics, is discussed in detail in [9]. We consider
a more general case since we allow non-integer valued
symbol weights. In order to handle this situation, we
use general Dirichlet’s series [10] instead of Taylor series
as generating functions.

2.1. Definitions and Notation

Our definition of DNCs as presented next mainly
follows the one given in [8].

Definition 1. A DNC A = (A, ω) consists of a count-
able set A of strings accepted by the channel and an
associated weight function ω : A → R

⊕ (R⊕ denotes the
nonnegative real numbers) with the following property.
If a, b ∈ A and ab ∈ A (ab denotes the concatenation
of a and b), then ω(ab) = ω(a) + ω(b). By convention,
the empty string ε is always an element of A and the
weight of ε is equal to zero, i.e., w(ε) = 0.

Definition 2. Let A = (A, ω) represent a DNC. We
define the generating function of A by

GA(s) =
∑

a∈A

e−ω(a)s, s ∈ C (2)

where C denotes the set of complex numbers.

Let Ω denote the set of distinct string weights of
elements in A. We order and index the set Ω such that
Ω = {νk}

∞
k=1 with ν1 < ν2 < · · · . For every νk ∈ Ω,

N(νk) denotes the number of distinct strings of weight
νk that are accepted by the channel. We can now write
the generating function as

GA(s) =

∞
∑

k=1

N(νk)e−νks. (3)

Since the coefficients N(νk) result from an enumera-
tion, they are all nonnegative. The combinatorial ca-
pacity of a DNC as defined in (1) can now be written
as

C = lim sup
k→∞

lnN(νk)

νk

. (4)

2.2. DNCs of Interest

Throughout this paper, we restrict our attention to
DNCs where the ordered set of string weights {νk}

∞
k=1

is not too dense, that is, there exists some constant
L ≥ 0 and some constant K ≥ 0 such that for any
integer n ≥ 0

max
νk<n

k ≤ LnK . (5)

Otherwise, the number of possible string weights in
the interval [n, n + 1] increases exponentially with n,
in which case the definition of combinatorial capacity
given in (4) is not appropriate. This is illustrated in
the following example.

Example 1. Let N(νk) denote the coefficients of the
generating function of some DNC. Assume N(νk) = 1
for all k ∈ N and assume further

max
νk<n

k = ⌈Rn⌉ (6)

for some R > 1. According to (4), the capacity of the
DNC is then equal to zero because of ln N(νk) = 0 for
all k ∈ N. However, the channel accepts Rn distinct
strings of weight smaller than n. The average amount
of data per string weight that we can transmit over
the channel is thus lower-bounded by lnRn/n = lnR,
which is according to the assumption greater than zero.
⊳

For a DNC A = (A, ω) where A is generated over a
finite set of symbols, the restriction (5) is automatically
fulfilled [5, Appendix A], implying that virtually any
constrained system of practical interest fulfills (5). Not
too dense sequences have another interesting property,
which we will need in our later derivations. We state
it in the following lemma.

Lemma 1. If a series {ak}
∞
k=1 is not too dense and if

0 ≤ x < 1, then the series
∑∞

k=1 xak converges.

See [5, Appendix A] for a proof of this lemma.

2.3. Calculating the Capacity

For a DNC of interest, we want to calculate the
combinatorial capacity as given in (4). An explicit for-
mula for regular DNCs was provided in [3, Theorem
1]. A detailed derivation of this formula for DNCs
with regular constraints and non-integer valued sym-
bol weights can be found in [5]. In [8], it was shown
that the combinatorial capacity (4) is determined by
the region of convergence (r.o.c.) of the corresponding
generating function for any DNC with the set of pos-
sible string weights {νk}

∞
k=1 being not too dense. We

restate this theorem here.

Theorem 1. Let A = (A, ω) be a DNC with the gener-
ating function GA(s). The combinatorial capacity C of
A is given by C = Q where ℜ{s} > Q (ℜ{s} denotes
the real part of s) is the r.o.c. of GA(s), that is,

C = lim sup
k→∞

lnN(νk)

νk

= Q. (7)
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Figure 1: Two different representations of the DNC
A = (A, w) by a tree. The DNC A is given by A =
{ε, t, u, tu} with w(t) = w(u) = 1.

Theorem 1 applies for general DNCs with possibly
non-integer valued symbol weights and arbitrary con-
straints on the symbol constellations. It can be inter-
preted as the general form of the Exponential Growth
Formula. In [9, Theorem IV.7], the Exponential Growth
Formula was stated for DNCs with integer valued weights
and arbitrary constraints. The latter version of the Ex-
ponential Growth Formula was used in [6] to calculate
the combinatorial capacity (4) of a non-regular DNC
with integer valued symbol weights.

3. INPUT SOURCES FOR DNCs

The purpose of this section is to define Markovian
input processes and the corresponding entropy rates
for general DNCs. First, we represent the set of strings
that are accepted by a general DNC by a tree and sec-
ond, we define a Markovian input process as a walk on
this tree and give a formula for its entropy rate. We
postpone the problem of finding the maximum entropy
rate to the next section.

3.1. Representing DNCs by Trees

We represent a DNC A = (A, ω) by a tree TA con-
sisting of a root, labelled and weighted branches, and
paths resulting from the concatenation of branches. We
restrict our considerations to paths that start at the
root. For each such path, we display its label at the cor-
responding end node. We do not allow distinct paths to
have the same label. A DNC A is represented by a tree
TA if there is a one-to-one mapping from A to the path
labels. Note that only the set of paths in TA is uniquely
determined by this mapping, but not how these paths
are formed by branches. See Figure 1 for an example of
this ambiguity. In this figure, a branch is represented
by an arrow, its weight by the distance between start
and end node, and its label is written above the arrow.
Notice that the set of paths represented by the node la-
bels displayed in the rectangles is the same for the tree
in Figure 1 i and the tree in Figure 1 ii. The DNC has
a finite set A of accepted sequences, therefore, the tree

representations are finite. However, DNCs of non-zero
combinatorial capacity have infinite sets of accepted
strings and as a consequence also infinite tree repre-
sentations. Surprisingly, we will see in the following
that although the tree representation of a DNC is not
unique, as long as it allows the definition of a Markov
input source, the maximum entropy rate of this source
will not depend on the chosen tree representation.

3.2. Markovian Input Sources

For a DNC A = (A, ω), we assume that every branch
in the tree representation TA has subsequent branches.
We can then define an input source by a Markov pro-
cess X = {Xl}

∞
l=1, where Xl chooses randomly among

the branches that start at the end node of the realiza-
tion of Xl−1. Every realization of X

(l) = (X1, . . . , Xl)
is thus a path in TA starting at the root and consisting
of l branches. The support of X

(l) is given by the set
of all such paths x(l) and we denote it by X

(l). Note
that for A = (A, ω), we have

A =

∞
⋃

l=1

X
(l). (8)

Whenever it follows directly from the context, we omit
for simplicity the superscript l and write x instead of
x(l). For all x ∈ X

(l), we have for the probability mass
function (PMF) pX(l) of X

(l)

p
X(l)(x) = P[X1 = x1]

l
∏

i=2

P[Xi = xi|Xi−1 = xi−1].

(9)

We conclude that the existence of a tree representa-
tion TA where each branch has subsequent branches is
equivalent to the existence of a Markovian input source
for A. Note that Regular DNCs can be represented by
finite state machines (FSMs) [4] and the tree represen-
tation can be obtained from the corresponding FSM.
The resulting tree representation then has automat-
ically the property that each branch has subsequent
branches.

Following [3],[5], the entropy rate H of X is given
by

H(X) = lim sup
l→∞

H(X(l))

Ll

(10)

where Ll is equal to the average weight of all x ∈ X
(l)

with respect to (w.r.t.) the PMF of X
(l) and where

H(X(l)) denotes the entropy of X
(l) in nats.



4. PROBLEM STATEMENT

We now come to the key topic of this paper: the
maximization of the entropy rate of input processes for
general DNCs.

4.1. Maximum Entropy Rate

Definition 3. We define the maximum entropy rate R

of a DNC by

R = max
X

H(X). (11)

where the maximum is taken over all Markovian pro-
cesses X that generate valid input sequences for the
DNC.

Note that in [5], the term probabilistic capacity was
used instead of maximum entropy rate. However, we
prefer the latter term.

The entropy rate H(X) is maximized, if each term
of the sequence on the right hand side of (10) is max-
imized. For each l, the maximum entropy per average
branch weight

Rl = max
p

X
(l)

H(X(l))

Ll

(12)

is given by the greatest positive real solution of the
equation

∑

x∈X(l)

e−ω(x)s = 1. (13)

In addition, for all x ∈ X
(l), the PMF of X

(l) that
achieves this rate is uniquely given by

qX(l)(x) = e−ω(x)Rl . (14)

These two properties of Rl were derived by using La-
grange Multipliers in [11] and they were independently
derived in [12] by using the bound lnx ≤ x − 1. We
offer an alternative proof by applying the information
inequality [13], which states for the Kullback Leibler
Distance D(·‖·) of two PMFs p and q that

D(p‖q) ≥ 0 (15)

with equality if and only if p = q. We thus have

0 ≥ −D(pX(l)‖qX(l)) (16)

=
∑

x∈X(l)

pX(l)(x) ln
qX(l)(x)

pX(l)(x)
(17)

= H(X(l)) − RlLl (18)

which implies

H(X(l))

Ll

≤ Rl (19)

with equality if and only if pX(l) = qX(l) . Combining
(10), (11), and (12), we have

R = lim sup
l→∞

Rl = lim sup
l→∞

max
p

X
(l)

H(X(l))

Ll

. (20)

The form on the right hand side of (20) allows us to
compare the maximum entropy rate of a DNC to its
combinatorial capacity as given in (4). We illustrate
this in the following by two simple examples.

Example 2. Let A = (A, ω) represent a DNC that ac-
cepts all binary input sequences. The set A is thus
given by A = {0, 1}⋆ where ⋆ denotes the regular oper-
ation star [4]. We assume the symbol weights ω(0) =
ω(1) = 1. The combinatorial capacity is given by

C = lim sup
k→∞

lnN(νk)

νk

(21)

= lim sup
k→∞

ln 2k

k
. (22)

To calculate the maximum entropy rate of A, we note
that for each x ∈ X

(l), we have ω(x) = l and in ad-
dition, the cardinality of X

(l) is given by |X(l)| = 2l.
The average weight Ll of x(l) is thus given by Ll = l
and maximizing the entropy rate reduces to maximiz-
ing the entropy of X

(l). The maximum entropy of X
(l)

is given by maxp
X

(l)
H(X(l)) = ln |X(l)|, see [13]. All

together we have

R = lim sup
l→∞

max
p

X
(l)

H(X(l))

Ll

(23)

= lim sup
l→∞

maxp
X

(l)
H(X(l))

l
(24)

= lim sup
l→∞

ln |X(l)|

l
(25)

= lim sup
l→∞

ln 2l

l
. (26)

We see from (22) and (26) that the maximum entropy
rate of A is equal to the combinatorial capacity, that
is, R = C. ⊳

Example 3. As in Example 2, we consider a DNC A =
(A, ω) that accepts all binary input sequences. How-
ever, we assume the symbol weights ω(0) = 1 and
ω(1) = 2. To show that C = R also holds in this
case, we have to explicitly calculate C and R. To show
equality by comparison as we did by (22) and (26) in



the previous example is no longer possible. To calcu-
late the combinatorial capacity, we write the generating
function of A as

GA(s) =

∞
∑

m=0

(e−1s + e−2s)m. (27)

The series converges if ℜ
{

e−1s + e−2s
}

< 1, therefore,
the combinatorial capacity C is by Theorem 1 given by
the smallest positive real solution of

e−1s + e−2s = 1. (28)

Let Y denote a random variable with support {0, 1},
and the associated weights ω(0) = 1 and ω(1) = 2. In
addition, let L denote the average weight of Y . The
maximum entropy rate of A can then be calculated as

R = lim sup
l→∞

max
p

X
(l)

H(X(l))

Ll

(29)

= lim sup
l→∞

max
pY

l H(Y )

lL
(30)

= max
pY

H(Y )

L
. (31)

By (13), it follows from the last line that R is also given
by (28), thus R = C. ⊳

5. MAIN RESULT

Based on the concepts introduced in the previous
sections, we can now state our main result.

Theorem 2. If the set of valid input sequences of a
DNC A = (A, ω) can be generated by a Markov process
(or equivalently, if the DNC can be represented by a
tree where each branch has a subsequent branch), then
the maximum entropy rate R of A is equal to its com-
binatorial capacity C, that is,

lim sup
k→∞

lnN(νk)

νk

= lim sup
l→∞

max
p

X
(l)

H(X(l))

Ll

. (32)

We will prove this equality in the following. Al-
though equality was shown in [5] for regular DNCs, to
the best of our knowledge nobody has addressed the
non-regular case until now.

Proof of Theorem 2. To proof the theorem, we show
that the region of convergence of the generating func-
tion GA(s) is given by ℜ{s} > R. The theorem then
follows because of Theorem 1.

The maximum entropy rate R is given by (20), which
is equivalent to the following. For every ǫ > 0, it holds

that

Rl < R + ǫ almost everywhere (a.e.) (33)

and

Rl > R − ǫ infinitely often (i.o.) (34)

with respect to l ∈ N (the set of natural numbers).
Since Rl is given by (13), this implies further

∑

x∈X(l)

e−ω(x)[R+ǫ] <
∑

x∈X(l)

e−ω(x)Rl = 1 a.e. (35)

and
∑

x∈X(l)

e−ω(x)[R−ǫ] >
∑

x∈X(l)

e−ω(x)Rl = 1 i.o. (36)

Because of (8), we can write the generating function as

GA(s) =
∑

a∈A

e−ω(a)s (37)

= lim
n→∞

n
∑

l=1

∑

x∈X(l)

e−ω(x)s (38)

and we can use (35) and (36) to give bounds on GA(s)
around s = R. It follows directly from (36) that

n
∑

l=1

∑

x∈X(l)

e−ω(x)[R−ǫ] n→∞
−→ ∞. (39)

For every ǫ > 0, the generating function GA(s) thus
diverges for ℜ{s} ≤ R − ǫ. It remains to show that it
converges whenever ℜ{s} > R. For some arbitrary but
fixed ǫ0 > 0, define

D =
∑

{l∈N|R+ǫ0≤Rl}

∑

x∈X(l)

e−ω(x)[R+ǫ0] (40)

Because of (33), the sum is taken over a finite number
of terms, and as a result, D is a finite number. For
every ǫ with ǫ0 > ǫ > 0, we have

n
∑

l=1

∑

x∈X(l)

e−ω(x)[R+2ǫ] =
n

∑

l=1

∑

x∈X(l)

e−ω(x)ǫe−ω(x)[R+ǫ]

(41)

≤

n
∑

l=1

∑

x∈X(l)

e−νlǫe−ω(x)[R+ǫ] (42)

=

n
∑

l=1

e−νlǫ
∑

x∈X(l)

e−ω(x)[R+ǫ] (43)

≤

n
∑

l=1

e−νlǫ
∑

x∈X(l)

e−ω(x)Rl + D (44)

=

n
∑

l=1

e−νlǫ + D. (45)



The inequality in (42) holds because for every l ∈ N,
the weight of x ∈ X

(l) is lower bounded by ω(x) ≥ νl.
We have inequality in (44), because of exp(−νlǫ) < 1
and (33). For those l for which Rl ≤ R + ǫ does not
apply, we add the correcting value D as defined in (40).
We can now write the sum in (45) as

n
∑

l=1

e−νlǫ =

n
∑

l=1

(e−ǫ)νl . (46)

For n tending to infinity, according to Lemma 1, this
series converges, since {νk}

∞
l is not too dense and since

exp(−ǫ) < 1. We conclude that GA(s) converges for
ℜ{s} ≥ R + 2ǫ.

If, for every ǫ > 0, GA(s) diverges for ℜ{s} ≤ R− ǫ
and converges for ℜ{s} ≥ R + ǫ, then the region of
convergence of GA(s) is given by ℜ{s} > R. This
concludes the proof of the theorem.

6. CONCLUSIONS

In this work, we showed that the equality of the
combinatorial capacity and the maximum entropy rate
of an input process holds for constrained systems in
general and is not a consequence of regular constraints,
which were considered in this context until now. In con-
trast to the proof of [3, Theorem 8] in [5] for the regular
case, our proof for the general case is not constructive,
so it remains a challenge to explicitly define capacity
achieving input sources for constrained systems with
non-regular constraints as the one considered in [6].
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[8] G. Böcherer, V. da Rocha Jr., and C. Pimentel,
“Capacity of general discrete noiseless channels,”
in Proc. Int. Symp. Commun. Applicat. (ISCTA),
2007. [Online]. Available: http://arxiv.org/abs/
0802.2451

[9] P. Flajolet and R. Sedgewick, Analytic Combina-
torics. Cambridge University Press, 2008.

[10] G. H. Hardy and M. Riesz, The General Theory of
Dirichlet’s Series. Cambridge: at the University
Press, 1915.

[11] R. S. Marcus, “Discrete noiseless coding,” Mas-
ter’s thesis, Massachusetts Institute of Technology,
1957.

[12] R. M. Krause, “Channels which transmit letters
of unequal duration,” Inf. Contr., vol. 5, pp. 3–24,
1962.

[13] T. M. Cover and J. A. Thomas, Elements of In-
formation Theory, 2nd ed. John Wiley & Sons,
Inc, 2006.


