
GRAPHICS HARDWARE ACCELERATED FIELD
STRENGTH PREDICTION FOR RURAL AND

URBAN ENVIRONMENTS

M. Reyer, T. Rick, R. Mathar

Institute for Theoretical Information Technology,
RWTH Aachen University
D-52062 Aachen, Germany

E-mail: {reyer,rick,mathar}@ti.rwth-aachen.de

Keywords: Field Strength Prediction, Urban, Rural, Graphics
Hardware.

Abstract

Acceleration techniques on graphics hardware for field
strength prediction algorithms are presented. We identify
some basic building blocks of common propagation
algorithms and propose methods which can be very efficiently
implemented on graphics processing units. We show that the
use of such acceleration techniques leads to huge speedups in
the evaluation time of propagation algorithms.

1 Introduction

Field strength prediction is of tremendous importance for
planning, analysis, control and optimization of radio
networks. For instance, coverage analysis, interference
estimation as well as channel and power allocation are based
on field strength prediction. These predictions have to be both
accurate and fast in order to cope with the vast amount of
different configurations to select the best candidate from.
An overview of common radio wave propagation models can
be found in [4] or [16]. Models proposed in literature can be
basically divided into (semi) empirical and ray optical (ray
tracing) models. Empirical models estimate the received
power predominantly on the basis of frequency and distance
to the transmitter. Ray optical approaches identify ray paths
through the scene, based on wave guiding effects like
reflection, diffraction or scattering. Empirical models usually
offer fast computation times but suffer from inherent low
prediction quality if the influence of wave guiding effects is
high. Ray optical algorithms are known to achieve very
accurate predictions at the cost of higher computation times.
Depending on the complexity of the propagation
environment, the computation of ray paths is known to be the
most time consuming task in ray optical algorithms.
In this paper we focus on acceleration techniques for wave
propagation predictions. A very promising approach is the use
of ordinary graphics cards, nowadays available in every
personal computer. Modern graphics hardware combines
extremely huge computing power, which is achieved by a

Figure 1: Floating-Point Operations per Second for CPU and
GPU, cf. [11].

strict parallel architecture, with a high level of
programmability. The key challenge of programming
graphics hardware is the unusual programming paradigm
coming from the primary areas of application which is
predominantly interactive computer graphics. Growing
support of the so called General Purpose Computation on
Graphics Hardware (GPGPU) led to recent changes in this
architecture [11], providing more common ways of
programming.
The computational power offered by graphics cards is already
exploited for problems that go beyond graphical applications,
like sorting or physical simulations. Implementations on the
Graphics Processing Unit (GPU) often accelerate algorithms
by orders of magnitude compared to standard CPU
implementations. An overview on some ideas of GPGPU is
presented in [7]. Recent work comprises real-time ray tracing
for image synthesis [3], [10], which is of particular interest
with regard to wave propagation algorithms based on ray
tracing.
With the implementation of some basic building blocks of
wave propagation algorithms on graphics hardware, the
evaluation time of a wide range of propagation models can be
accelerated significantly. Our ultimate goal is to provide wave
propagation predictions for automatic planning or control
algorithms on demand, thus eliminating the need for time
consuming pre-processing and storing predictions in a
database.

������ �� ��� �

	
��

 � �� ���
���� �� ��� �

� �
� �
�� ��� �

� � ����
� ������� ��

� �
�� �� �
� ������� ���
� �� ���� �

Figure 2: The Graphics Rendering Pipeline

This paper is organized as follows. In Section 2 we present
the basic concepts of graphics hardware. Acceleration
techniques that exploit the special architecture of graphics
hardware for different propagation models are discussed in
Section 3. We conclude this work with a short summary in
Section 4.

2 Graphics Hardware

In the last few years, the programmable graphics processing
units have evolved into an extremely powerful computing
device, as illustrated by Figure 1. The main reason for the
high throughput is that the Graphics Programming Unit
(GPU) is specialized for computational intensive, highly
parallel calculations. That is, the GPU is especially designed
to support data processing, rather than data caching and flow
control as is the CPU. Thus, the architecture of graphics cards
is a Single Instruction Multiple Data (SIMD) architecture,
i.e., many parallel processors simultaneously execute the
same instructions at a time on different parts of data. For the
computation of scientific problems as radio wave propagation
prediction, the key challenge of programming graphics
hardware to contribute in is to correctly map the problem
related tasks to the graphics rendering context.
The programming paradigm of today’s graphics hardware is
best described by the stages of the Graphics Rendering
Pipeline (Figure 2).
The input of the pipeline consists of planar geometric objects
(triangles or quadrangles) which are described by their
coordinates (vertices) and additional arbitrary numerical
information (textures). In the first processing step of the
rendering pipeline, multiple vertex processors execute in
parallel the instructions from a user-written program on the
vertices. Commonly, geometric transformations like
translations and rotations are applied here.
In the subsequent step, the processed geometry is sampled
(rasterized) into discrete points (fragments). Each fragment
has a pixel position on the screen, a depth value and
additional data.
Analogous to the vertex processors, multiple fragment
processors execute a user-written program on each fragment
in parallel, producing the final result of the GPU computation.
Usually, the output consists of a three-dimensional vector
which is commonly interpreted as color information.

Figure 3: CPU vs. GPU COST-WI implementation (Runtimes
from the COST-Munich scenario [8]).

Finally, all fragments are collected and recorded in the frame
buffer. If multiple fragments are mapped to the same pixel
position, the depth test specifies which one is written into the
frame buffer by evaluating the fragments’ depth values.
For more details on the programming of today’s graphics
hardware see [7].

3 Propagation Models and Acceleration
Techniques

In this section we review main building blocks of common
prediction algorithms and their counterpart on the GPU. A
basic requirement for radio wave propagation models is to
determine whether transmitter and receiver are in line of sight
(LOS) or not (NLOS). Transmitter and receiver are in line of
sight whenever the direct line between them is unobstructed.
For instance, the well-known COST-Walfisch-Ikegami
(COST-WI) model [4] gives different path loss formulas for
the LOS and NLOS case.
In the graphics community the line of sight problem is very
well studied and is called the visibility problem. Furthermore,
efficient algorithms [9] have been developed which are
explicitly designed to benefit from the special architecture of
the GPU. A common task in graphics application is to
determine the shadow of an object which is equivalent to
finding all areas which are not visible by a certain light
source.
The propagation environment is often described by terrain,
building and vegetation data. To decide between LOS and
NLOS the geometry of the propagation environment is
uploaded to the graphics hardware and shadow algorithms are
applied to mark the NLOS region of a certain source point.
When executed on the GPU, special algorithms feature run
times in the order of milliseconds, even for complex scenarios
consisting of millions of triangles.
Building data for urban field strength prediction is usually
represented by a polygonal outline and one height value, i.e.,
buildings have flat roofs. Data given in this format is called

Figure 4: Discretization of propagation environment and ray
launching principle.

2.5D. This structure can be utilized to develop an efficient
shadow algorithm especially for graphics hardware, cf. [1].
Using the COST-Walfisch-Ikegami model, this
implementation allows predicting up to 200 different
transmitter sites in one second in the well-known COST
Munich scenario [8]. This includes the distinction between
LOS/NLOS for every single transmitter location and a
successive path loss evaluation. For comparison we
implemented just the COST-WI evaluation for line of sight on
the CPU. In this particular implementation we do not check
whether a point is in LOS on the CPU, which would
presumably be the most expensive part of a full COST-WI
implementation. Figure 3 illustrates the run times of a CPU
and a GPU COST-WI implementation at different resolutions
of the supplying area. It can be seen that our GPU
implementation of the full model (including LOS/NLOS)
outperforms even the simplified CPU implementation by
orders of magnitude.

3.1 Acceleration Techniques for Ray Tracing Algorithms

Ray tracing propagation algorithms are a means to model
complex indoor and outdoor propagation environments
deterministically [16]. The basic task is to identify ray paths
through the scene which may be deflected due to wave
guiding effects like reflection, diffraction and scattering.
Ray optical algorithms are known to allow extremely accurate
predictions [13], [12]. However, because of the multitude of
ray paths due to complex interactions of radio waves with the
propagation environment (e.g. buildings) ray tracing
algorithms are computational intensive and show rather large
runtimes. The most time consuming part in ray tracing
algorithms is to solve the problem of visibility between
objects, i.e., identify all possible sources of

0

5000000

10000000

15000000

20000000

25000000

30000000

Intel(R) Xeon(TM)
CPU 2.80GHz

NVIDIA GPU
GeForce 8800 GTX

Rays per Second

Figure 5: Rays per Second on CPU and on GPU.

deflection. In standard ray tracing algorithms rays are
intersected with the geometry of the scene to determine
visibility. Even with efficient data structures, a lot of objects
have to be tested for intersections which leads to the high
computational complexity.
Existing approaches to reduce the computational complexity
often rely on a (pre-) processing step, in which the building
database is processed once and the possible visibility relations
between objects are determined and stored for future access.
In [12], a so-called ray launching approach has been
proposed. The key idea is to sample the propagation
environment into a set of discrete cubes. A cube is filled, if it
intersects with an object that describes the scene and is empty
otherwise. Figure 4 illustrates that concept. The discrete
structure allows a different approach of determining visibility
of objects. Two cubes (objects) are visible to each other if all
cubes on the direct line between the centers of those cubes are
unfilled.
Carrying this principle over to the graphics hardware leads to
two different approaches.
The first one is a backward mapping (ray tracing) algorithm,
where similar to [12] rays are sampled. Starting from the
transmitter, a bunch of rays is sent into all directions. As soon
as a filled cube is reached on the sampled ray we stop and
continue with the processing of secondary rays due to
diffraction or reflection, if necessary. The sampling of a ray
into a set of cubes can be done by line rasterization
algorithms, well-known in computer graphics. However, line
sampling algorithms are easily implemented on the graphics
processing unit.
For comparison of the runtimes of line rasterization on CPU
and GPU hardware we have implemented the rasterization for
both. The reference scenario consisted of a 1000x600 grid
where we have sampled rays from the center to every point in
the grid. At each sampling step we performed a memory
access and a summation of four floating point values. Total

runtime on the CPU (Intel(R) Xeon(TM) CPU 2.80GHz) was
about 3.2 seconds. The GPU (NVIDIA GPU GeForce 8800
GTX) implementation exhibits a run time of only 0.02
seconds for the same computations. Hence, as Figure 5
illustrates, the CPU with roughly 187500 rays per second is
clearly outperformed by orders of magnitude by the GPU
which was able to process about 30 million rays per second,
approximately 160 times faster than the CPU.
The second technique is a so-called forward mapping
algorithm. The geometry of the scene is projected (e.g.
orthogonal or perspective) onto a two-dimensional plane. This
corresponds directly to drawing a scene on the screen. The
geometry of the propagation environment (buildings, terrain,
etc.) is uploaded to the graphics hardware and then rendered
as a pixel image. Thus, each pixel corresponds to a geometric
object. The rendering process is completely executed on the
GPU. First, each object undergoes a certain geometric
transformation and projection onto the so-called image plane,
as described in Section 2. Hence, if we let the graphics card
render the scene from the transmitters perspective, we can
conclude which objects are visible, i.e., in line of sight, based
on the numerical information in the frame buffer. Thus, the
result of this computation (rendering) done on the graphics
hardware provides us with a list of potential visible objects.
Ray intersection computations can concentrate on these
objects for finding deflection sources.
In [6] and [14] it has been observed that a detailed
representation of a rural propagation environment can
significantly improve the prediction accuracy. This modeling
should include topographical as well as morphological
information in an adequate resolution. The dominant
propagation effects that have been identified in rural
environment are diffractions in hilly terrain and scattering due
to terrain irregularities. Again, usually ray tracing techniques
are applied to approximate those effects.
For the calculation of ray paths, the terrain information has to
be converted into geometric objects. This task is a well-
studied object in computer graphics, and [5] propose a
method for rendering height profiles on the GPU. This
technique has two major benefits. First, it can efficiently deal
with large and detailed terrain databases, and second, it
features a built-in adaptive resolution of the geometry which
is extracted from the terrain data. The main motivation for
this algorithm has been to display large terrain profiles. We
benefit from this for solving the visibility problem in hilly
environments as only rays to visible surfaces have to be
emitted.

4 Summary

In this paper, we have presented graphics hardware as a very
attractive platform for the acceleration of common radio wave
propagation algorithms. The graphics cards feature a large
number of floating-point operations per second, due to a
highly parallel architecture which, in particular is interesting
for computational intensive scientific tasks like ray tracing in
propagation predictions.

We identified mainly three techniques for accelerating
propagation algorithms which can be entirely implemented on
the GPU. These are, shadow computations for marking non
line of sight regions, line sampling as a backward mapping
technique to speed up ray-object intersections and direct
rendering of geometry (forward mapping) to identify possible
deflection sources where wave guiding effects like reflection
and diffraction can be further processed. Hence, all presented
techniques solve an approximation to the introduced visibility
problem and thereby greatly reduce the number of objects that
contribute to propagation effects.
We compared standard CPU implementations with some of
the proposed GPU methods. The speedups that we achieved
by an implementation on graphics hardware ranged from a
factor of 10 for the COST-WI model to a factor of 160 when
considering the line sampling on the CPU und GPU.
The main benefits, are on one hand a greatly reduced time for
simulation and optimization algorithms where usually a vast
amount of field strength prediction is required. On the other
hand, faster algorithms allow higher resolutions of the
supplying area and consideration of more detailed description
of the propagation environment.

Acknowledgements

The authors would like to thank Valeria Gracheva for her
valuable contributions.

References

 [1] D. Catrein, M. Reyer, T. Rick. “Accelerating Radio Wave
Propagation Predictions by Implementation on Graphics
Hardware”, Proceedings: IEEE VTC Spring, (2007).

[2] D. Catrein, V. Gracheva, T. Rick, R. Mathar. “Land
Cover Field Stength Prediction for Suburban Scenarios”,
Technical Report, (2007).

[3] D. Weiskopf, T. Schafhitzel, T. Ertl. “GPU-Based
Nonlinear Ray Tracing, Computer graphics forum, 23, pp.
625-633, (2004).

[4] E. Damosso, Ed., COST Action 231. “Digital Mobile
Radio Towards Future Generation Systems, Final Report”.
Luxembourg: Office for Official Publications of the
European Communities, (1999).

[5] H. Hoppe, F. Lasasso. “Geometry Clipmaps: Terrain
Rendering Using Nested Regular Grids”, ACM Siggraph,
(2004).

[6] I. Schneider, F. Lambrecht, A. Baier. “Enhancement of
the Okumara-Hata Propagation Model using detailed
Morphological and Building Data”, In Proceedings of
Personal, Indoor and Mobile Radio Communications, (1996).

[7] J. D. Owens, D. Luebke , N. Govindaraju , M. Harris,

J.Krueger , A. E. Lefohn ,T. J. Purcell. “A Survey of General-
Purpose Computation on Graphics Hardware”, Eurographics
2005, State of the Art Reports, pp. 21-51, (August 2005).

[8] Mannesmann Mobilfunk GmbH, Germany. “COST 231 -
Urban Micro Cell Measurements and Building Data”,
[Online]. Available : http://www.ihe.uni-
karlsruhe.de/forschung/cost231/cost231.en.html

[9] M. McGuire. GPU Gems, Addison Welsey, ch. “Effective
Shadow Volume Rendering”, pp. 137-166, (2004).

[10] N. A. Carr, J. Hoberock, K. Crane, J. C. Hart. “Fast
GPU Ray Tracing of Dynamic Meshes using Geometry
Images”, Proceedings of Graphics Interface, pp. 203-209,
(June 2006).

[11] NVIDIA, “CUDA Compute Unified Device
Architecture”, [Online]. Available: http://www.nvidia.com

[12] R. Mathar, M. Reyer, M. Schmeink. “A Cube Oriented
Ray Launching Algorithm for 3D Urban Field Strength
Prediction”, Proceedings: IEEE ICC 2007, Glasgow, (June
2007).

[13] R. Wahl, G. Wölfle, P. Wertz, P. Wildbolz, F.
Landstorfer. “Dominant Path Prediction Model for Urban
Scenarios” 14th IST Mobile and Wireless Communications
Summit, Dresden, (June 2005).

[14] T. Kuerner, D.J. Cichon, W. Wiesbeck. “Verification
and Deterministic Wave Propagation Models for Rural and
Urban Areas”, in Proceedings of the IEEE AP-S Int.
Symposium and URSI Radio Science Meeting, pp. 1376-
1379, (July 1992).

[15] T. Rick, R. Mathar. “Fast Edge-Diffraction-Based Radio
Wave Propagation Model for Graphics Hardware”. ITG
INICA Munich, (March 2007).

[16] T.S. Rappaport, Ed. “Wireless Communications:
Principles and Practice”. Upper Saddle River, NJ, USA:
Prentice Hall, (1995).

http://www.nvidia.com/

