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Abstract 

Acceleration techniques on graphics hardware for field 
strength prediction algorithms are presented. We identify 
some basic building blocks of common propagation 
algorithms and propose methods which can be very efficiently 
implemented on graphics processing units. We show that the 
use of such acceleration techniques leads to huge speedups in 
the evaluation time of propagation algorithms. 
 

1 Introduction 

Field strength prediction is of tremendous importance for 
planning, analysis, control and optimization of radio 
networks. For instance, coverage analysis, interference 
estimation as well as channel and power allocation are based 
on field strength prediction. These predictions have to be both 
accurate and fast in order to cope with the vast amount of 
different configurations to select the best candidate from. 
An overview of common radio wave propagation models can 
be found in [4] or [16]. Models proposed in literature can be 
basically divided into (semi) empirical and ray optical (ray 
tracing) models. Empirical models estimate the received 
power predominantly on the basis of frequency and distance 
to the transmitter. Ray optical approaches identify ray paths 
through the scene, based on wave guiding effects like 
reflection, diffraction or scattering. Empirical models usually 
offer fast computation times but suffer from inherent low 
prediction quality if the influence of wave guiding effects is 
high. Ray optical algorithms are known to achieve very 
accurate predictions at the cost of higher computation times. 
Depending on the complexity of the propagation 
environment, the computation of ray paths is known to be the 
most time consuming task in ray optical algorithms.  
In this paper we focus on acceleration techniques for wave 
propagation predictions. A very promising approach is the use 
of ordinary graphics cards, nowadays available in every 
personal computer. Modern graphics hardware combines 
extremely huge computing power, which is achieved by a 

Figure 1: Floating-Point Operations per Second for CPU and 
GPU, cf. [11]. 
 
strict parallel architecture, with a high level of 
programmability. The key challenge of programming 
graphics hardware is the unusual programming paradigm 
coming from the primary areas of application which is 
predominantly interactive computer graphics. Growing 
support of the so called General Purpose Computation on 
Graphics Hardware (GPGPU) led to recent changes in this 
architecture [11], providing more common ways of 
programming. 
The computational power offered by graphics cards is already 
exploited for problems that go beyond graphical applications, 
like sorting or physical simulations. Implementations on the 
Graphics Processing Unit (GPU) often accelerate algorithms 
by orders of magnitude compared to standard CPU 
implementations. An overview on some ideas of GPGPU is 
presented in [7]. Recent work comprises real-time ray tracing 
for image synthesis [3], [10], which is of particular interest 
with regard to wave propagation algorithms based on ray 
tracing. 
With the implementation of some basic building blocks of 
wave propagation algorithms on graphics hardware, the 
evaluation time of a wide range of propagation models can be 
accelerated significantly. Our ultimate goal is to provide wave 
propagation predictions for automatic planning or control 
algorithms on demand, thus eliminating the need for time 
consuming pre-processing and storing predictions in a 
database. 
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Figure 2: The Graphics Rendering Pipeline  
 
This paper is organized as follows. In Section 2 we present 
the basic concepts of graphics hardware. Acceleration 
techniques that exploit the special architecture of graphics 
hardware for different propagation models are discussed in 
Section 3. We conclude this work with a short summary in 
Section 4. 
 

2 Graphics Hardware 

In the last few years, the programmable graphics processing 
units have evolved into an extremely powerful computing 
device, as illustrated by Figure 1. The main reason for the 
high throughput is that the Graphics Programming Unit 
(GPU) is specialized for computational intensive, highly 
parallel calculations. That is, the GPU is especially designed 
to support data processing, rather than data caching and flow 
control as is the CPU. Thus, the architecture of graphics cards 
is a Single Instruction Multiple Data (SIMD) architecture, 
i.e., many parallel processors simultaneously execute the 
same instructions at a time on different parts of data. For the 
computation of scientific problems as radio wave propagation 
prediction, the key challenge of programming graphics 
hardware to contribute in is to correctly map the problem 
related tasks to the graphics rendering context.  
The programming paradigm of today’s graphics hardware is 
best described by the stages of the Graphics Rendering 
Pipeline (Figure 2).  
The input of the pipeline consists of planar geometric objects 
(triangles or quadrangles) which are described by their 
coordinates (vertices) and additional arbitrary numerical 
information (textures). In the first processing step of the 
rendering pipeline, multiple vertex processors execute in 
parallel the instructions from a user-written program on the 
vertices. Commonly, geometric transformations like 
translations and rotations are applied here.  
In the subsequent step, the processed geometry is sampled 
(rasterized) into discrete points (fragments). Each fragment 
has a pixel position on the screen, a depth value and 
additional data. 
Analogous to the vertex processors, multiple fragment 
processors execute a user-written program on each fragment 
in parallel, producing the final result of the GPU computation. 
Usually, the output consists of a three-dimensional vector 
which is commonly interpreted as color information.  

 
Figure 3: CPU vs. GPU COST-WI implementation (Runtimes 
from the COST-Munich scenario [8]). 
 
Finally, all fragments are collected and recorded in the frame 
buffer. If multiple fragments are mapped to the same pixel 
position, the depth test specifies which one is written into the 
frame buffer by evaluating the fragments’ depth values. 
For more details on the programming of today’s graphics 
hardware see [7]. 
 

3 Propagation Models and Acceleration 
Techniques 

In this section we review main building blocks of common 
prediction algorithms and their counterpart on the GPU. A 
basic requirement for radio wave propagation models is to 
determine whether transmitter and receiver are in line of sight 
(LOS) or not (NLOS). Transmitter and receiver are in line of 
sight whenever the direct line between them is unobstructed. 
For instance, the well-known COST-Walfisch-Ikegami 
(COST-WI) model [4] gives different path loss formulas for 
the LOS and NLOS case.   
In the graphics community the line of sight problem is very 
well studied and is called the visibility problem. Furthermore, 
efficient algorithms [9] have been developed which are 
explicitly designed to benefit from the special architecture of 
the GPU. A common task in graphics application is to 
determine the shadow of an object which is equivalent to 
finding all areas which are not visible by a certain light 
source. 
The propagation environment is often described by terrain, 
building and vegetation data. To decide between LOS and 
NLOS the geometry of the propagation environment is 
uploaded to the graphics hardware and shadow algorithms are 
applied to mark the NLOS region of a certain source point. 
When executed on the GPU, special algorithms feature run 
times in the order of milliseconds, even for complex scenarios 
consisting of millions of triangles.  
Building data for urban field strength prediction is usually 
represented by a polygonal outline and one height value, i.e., 
buildings have flat roofs. Data given in this format is called 



  
Figure 4: Discretization of propagation environment and ray 
launching principle. 
 
2.5D. This structure can be utilized to develop an efficient 
shadow algorithm especially for graphics hardware, cf. [1]. 
Using the COST-Walfisch-Ikegami model, this 
implementation allows predicting up to 200 different 
transmitter sites in one second in the well-known COST 
Munich scenario [8]. This includes the distinction between 
LOS/NLOS for every single transmitter location and a 
successive path loss evaluation. For comparison we 
implemented just the COST-WI evaluation for line of sight on 
the CPU. In this particular implementation we do not check 
whether a point is in LOS on the CPU, which would 
presumably be the most expensive part of a full COST-WI 
implementation. Figure 3 illustrates the run times of a CPU 
and a GPU COST-WI implementation at different resolutions 
of the supplying area. It can be seen that our GPU 
implementation of the full model (including LOS/NLOS) 
outperforms even the simplified CPU implementation by 
orders of magnitude. 
 

3.1 Acceleration Techniques for Ray Tracing Algorithms 

Ray tracing propagation algorithms are a means to model 
complex indoor and outdoor propagation environments 
deterministically [16]. The basic task is to identify ray paths 
through the scene which may be deflected due to wave 
guiding effects like reflection, diffraction and scattering.  
Ray optical algorithms are known to allow extremely accurate 
predictions [13], [12]. However, because of the multitude of 
ray paths due to complex interactions of radio waves with the 
propagation environment (e.g. buildings) ray tracing 
algorithms are computational intensive and show rather large 
runtimes. The most time consuming part in ray tracing 
algorithms is to solve the problem of visibility between    
objects,  i.e.,   identify   all     possible   sources   of  
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Figure 5: Rays per Second on CPU and on GPU. 
 
deflection. In standard ray tracing algorithms rays are 
intersected with the geometry of the scene to determine  
visibility. Even with efficient data structures, a lot of    objects 
have to be tested for intersections which leads to the high 
computational complexity. 
Existing approaches to reduce the computational complexity 
often rely on a (pre-) processing step, in which the building 
database is processed once and the possible visibility relations 
between objects are determined and stored for future access. 
In [12], a so-called ray launching approach has been 
proposed. The key idea is to sample the propagation 
environment into a set of discrete cubes. A cube is filled, if it 
intersects with an object that describes the scene and is empty 
otherwise. Figure 4 illustrates that concept. The discrete 
structure allows a different approach of determining visibility 
of objects. Two cubes (objects) are visible to each other if all 
cubes on the direct line between the centers of those cubes are 
unfilled. 
Carrying this principle over to the graphics hardware leads to 
two different approaches.  
The first one is a backward mapping (ray tracing) algorithm, 
where similar to [12] rays are sampled. Starting from the 
transmitter, a bunch of rays is sent into all directions. As soon 
as a filled cube is reached on the sampled ray we stop and 
continue with the processing of secondary rays due to 
diffraction or reflection, if necessary.  The sampling of a ray 
into a set of cubes can be done by line rasterization 
algorithms, well-known in computer graphics. However, line 
sampling algorithms are easily implemented on the graphics 
processing unit.  
For comparison of the runtimes of line rasterization on CPU 
and GPU hardware we have implemented the rasterization for 
both. The reference scenario consisted of a 1000x600 grid 
where we have sampled rays from the center to every point in 
the grid. At each sampling step we performed a memory 
access and a summation of four floating point values. Total 



runtime on the CPU (Intel(R) Xeon(TM) CPU 2.80GHz) was 
about 3.2 seconds. The GPU (NVIDIA GPU GeForce 8800 
GTX) implementation exhibits a run time of only 0.02 
seconds for the same computations. Hence, as Figure 5 
illustrates, the CPU with roughly 187500 rays per second is 
clearly outperformed by orders of magnitude by the GPU 
which was able to process about 30 million rays per second, 
approximately 160 times faster than the CPU. 
The second technique is a so-called forward mapping 
algorithm. The geometry of the scene is projected (e.g. 
orthogonal or perspective) onto a two-dimensional plane. This 
corresponds directly to drawing a scene on the screen. The 
geometry of the propagation environment (buildings, terrain, 
etc.) is uploaded to the graphics hardware and then rendered 
as a pixel image. Thus, each pixel corresponds to a geometric 
object. The rendering process is completely executed on the 
GPU. First, each object undergoes a certain geometric 
transformation and projection onto the so-called image plane, 
as described in Section 2. Hence, if we let the graphics card 
render the scene from the transmitters perspective, we can 
conclude which objects are visible, i.e., in line of sight, based 
on the numerical information in the frame buffer. Thus, the 
result of this computation (rendering) done on the graphics 
hardware provides us with a list of potential visible objects. 
Ray intersection computations can concentrate on these 
objects for finding deflection sources.    
In [6] and [14] it has been observed that a detailed 
representation of a rural propagation environment can 
significantly improve the prediction accuracy. This modeling 
should include topographical as well as morphological 
information in an adequate resolution. The dominant 
propagation effects that have been identified in rural 
environment are diffractions in hilly terrain and scattering due 
to terrain irregularities. Again, usually ray tracing techniques 
are applied to approximate those effects. 
For the calculation of ray paths, the terrain information has to 
be converted into geometric objects. This task is a well-
studied object in computer graphics, and [5] propose a 
method for rendering height profiles on the GPU. This 
technique has two major benefits. First, it can efficiently deal 
with large and detailed terrain databases, and second, it 
features a built-in adaptive resolution of the geometry which 
is extracted from the terrain data. The main motivation for 
this algorithm has been to display large terrain profiles. We   
benefit from this for solving the visibility problem in hilly 
environments as only rays to visible surfaces have to be 
emitted. 
 

4 Summary 

In this paper, we have presented graphics hardware as a very 
attractive platform for the acceleration of common radio wave 
propagation algorithms. The graphics cards feature a large 
number of floating-point operations per second, due to a 
highly parallel architecture which, in particular is interesting 
for computational intensive scientific tasks like ray tracing in 
propagation predictions. 

We identified mainly three techniques for accelerating 
propagation algorithms which can be entirely implemented on 
the GPU. These are, shadow computations for marking non 
line of sight regions, line sampling as a backward mapping 
technique to speed up ray-object intersections and direct 
rendering of geometry (forward mapping) to identify possible 
deflection sources where wave guiding effects like reflection 
and diffraction can be further processed. Hence, all presented 
techniques solve an approximation to the introduced visibility 
problem and thereby greatly reduce the number of objects that 
contribute to propagation effects.  
We compared standard CPU implementations with some of 
the proposed GPU methods. The speedups that we achieved 
by an implementation on graphics hardware ranged from a 
factor of 10 for the COST-WI model to a factor of 160 when 
considering the line sampling on the CPU und GPU. 
The main benefits, are on one hand a greatly reduced time for 
simulation and optimization algorithms where usually a vast 
amount of field strength prediction is required. On the other 
hand, faster algorithms allow higher resolutions of the 
supplying area and consideration of more detailed description 
of the propagation environment. 
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