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Abstract— As a theoretical concept, and a means to under-
stand the potential of interference alignment, in this paper we
investigate possibilities to place n transmitter-receiver pairs in
n − 1 dimensions such that the interference from unintended
transmissions is aligned at each receiving node. By such an
arrangement each link has half of the capacity available, at
least in theory. Regular patterns of stations are considered. It is
shown that placing transmitters “outside” a regular arrangement
of receivers provides solutions in any dimension, while placing
transmitters “opposite” to intended receivers only yields a so-
lution in dimension one and two. Methodologically we borrow
from the field of distance geometry.

I. INTRODUCTION AND MOTIVATION

Interference alignment is a highly cooperative strategy to

enhance availability of a shared medium for a community

of users. It forms a change of paradigm from the common

strategy that each receiver uses power in a way best suited

for its intended receiver. The key idea is to concentrate

interference from unintended links at each receiver such that

the desired transmission sees half of the channel free of

interference. Hence, everyone gets half the cake. The general

concept arose from the study of degrees of freedom of the

cross channel and was first introduced in [1]. A survey of

interference alignment policies is given in [2], [3].

There are different ways to accomplish interference align-

ment. If received power at each station is adequate, complete

interference alignment can be achieved, as is demonstrated

in [2]. A fully connected wireless network of K users with

symmetric channel coefficients is considered for the AWGN

channel. It is shown that for Gaussian noise in the high SNR

regime the capacity per user is approximately one half of the

capacity achievable in an interference free network. Symbols

are regarded in a Q-ary representation, even components are

randomly selected from a discrete, w.r.t. addition carry-over

free set of reals, and each odd component is set to zero. The

channel coefficients are assumed as H [kj] = 1, if k = j
and H [kj] = Q−1, otherwise. The additive superposition of

symbols received at each user k,

Y [k] =
K∑

j=1

H [kj]X [j] + Z [k], (1)

then consists of the desired unaltered signal and interfering

signals from others shifted by one position to the right. Hence,

the desired signal can be detected nearly interference free.

In the high SNR regime, as power tends to infinity at each

transmitter, the quoted capacity result is obtained.

In [4], a MIMO channel of two transmitters and two

receivers with mutual interference is investigated. It is shown

that the alignment approach is superior to the interference

avoidance and iterative water-filling schemes, further high-

lighting the potential of cooperative interference suppression.

Algorithms for spatial interference in MIMO systems is

the theme of the work [3]. Transmit and receive filters are

successively updated until alignment is approximately reached.

The objective is to minimize the remaining interference power

in the dedicated signal at each receiver. Further, the algorithm

needs only local channel knowledge and may hence be exe-

cuted in a decentralized manner. The reciprocity principle of

wireless networks constitutes a crucial ingredient.

Ergodic interference alignment is treated in [5]. Comple-

mentary channel matrices are used by the transmitters to repeat

the same symbol twice. If receivers add the outputs from both

channel states all interference is eliminated at unintended re-

ceivers while the symbol is doubled at the designated receiver.

Related work is concerned with capacity approximations

for wireless networks by investigating degrees of freedom [1].

This approach also emphasizes the fact that interference rather

than thermal noise will be the bottleneck to the performance

of future wireless networks.

Interference alignment in time can be achieved for n
transmitter-receiver pairs whenever the propagation delay of

each transmitter to the desired receiver is an odd multiple of

the slot length t0, and the delay to the unintended receivers

is an even multiple of t0. All transmitters start transmission

at time zero and transmit simultaneously over all odd time

slots. In this scenario, the authors [6] point out that each

transmitter-receiver pair can use half of the channel time

with no interference from other transmitters. The impact of

propagation delay on the degrees of freedom in wireless

networks is investigated in [7]. The authors give an example of

a node placement of four links in the two-dimensional plane

that allows perfect interference alignment.

Assuming that delay is proportional to Euclidean distance

the question is how to locate transmitters and receivers such

that the above requirements are fulfilled. In a finite dimen-

sional space this seems to be impossible for large numbers
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Fig. 1. 2 transmitter-receiver pairs on a line such that perfect interference
alignment is achieved. Equal colors indicate designated links.

of pairs. In this paper, we investigate regular patterns of

transmitter-receiver pairs in the (n−1)-dimensional Euclidean

space such that complete interference alignment is accom-

plished by the above principle. In [8] it is shown that always

n transmitter-receiver pairs, i.e., a total number of 2n stations,

can be placed in an (n − 1)-dimensional Euclidean space

such that each unintended link has twice the distance of each

desired link, hence realizing the above described scenario.

Other configurations are investigated in the present paper.

Interestingly, a type of configuration which exists in one

and two dimensions does not have an extension to higher

dimensions.

In reality, of course only three dimensions are available.

Moreover, in real communication scenarios stations are more

or less randomly placed, they often move and do not follow

regular patterns to allow for interference alignment in time.

However, we hope that once the simple geometric scenario is

understood further conclusions can be made for interference

alignment by beamforming, power control, coding or by

utilizing channel properties, where in each of these cases an

arbitrary number of dimensions is available.

In the following, the distance between transmitters and

receivers is assumed to be a multiple of the packet duration,

which is normalized to be 1.

Let us start with dimension one, i.e., n = 2. Obvious

solutions to achieve interference alignment are depicted in

Figure 1, where squares illustrate transmitters and circles

receivers. Nodes of equal color indicate designated links. If

transmitters start transmission simultaneously and use only

odd slots for transmission, then in the first case intended

packets arrive in slots where there is no interference from

unintended transmission.

Both structures can be easily extended to two dimensions.

The corresponding solutions are two nested triangles, one

small triangle of receivers aligned with a larger one of

transmitters outside. In the second case, both triangles form

a regular hexagon of side length one. Both configurations are

shown in Figure 2.
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Fig. 2. 3 transmitter-receiver pairs on a plane such that perfect interference
alignment is achieved. Equal colors illustrate designated links.

The constellation where unintended links have twice the

distance of designated links can be easily extended to three

dimensions by aligning two tetrahedrons, the outer represent-

ing transmitters, the inner referring to receivers, see Figure 3.

The key idea even generalizes to arbitrary many dimensions.

Amazingly, there does not exist an analogous extension for

the entangled structure of Figure 2, where transmitters are

placed “opposite” and not “outside” of designated receivers.

It is the key contribution of the present paper to provide the

corresponding proof.

II. NOTATION AND PRELIMINARIES

We first fix the notation throughout this paper. Matrices

are denoted by boldface capital letters, vectors by boldface

lowercases. In denotes the identity matrix of order n, 1n the

n-vector of ones and 1n×n the (n× n)-matrix of ones.

En = In − 1
n
1n×n

is the projection onto the orthogonal complement of the

diagonal in R
n, the n-dimensional Euclidean space. ‖ · ‖

denotes the Euclidean norm and AT the transpose of some real

matrix A. rk(A) denotes the rank of matrix A. We often stack

vectors and matrices, which is denoted in a straightforward

manner by forming block vectors and matrices. It should be

mentioned that the rules of matrix multiplication carry over

directly to block matrices.

Let Δ =
(
δij

)
1≤i,j≤n

denote a symmetric matrix of

nonnegative entries with zero diagonal, a so called dissim-

ilarity matrix, and Δ(2) =
(
δ2
ij

)
1≤i,j≤n

the matrix of its

squared entries. A classical result of distance geometry due to

Schoenberg [9] characterizes the set of dissimilarity matrices

which allow for a Euclidean embedding.
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Fig. 3. 4 transmitter-receiver pairs in three-dimensional space such that
perfect interference alignment is achieved.

Theorem 1: Given a dissimilarity matrix Δ =(
δij

)
1≤i,j≤n

. There are n points x1, . . . ,xn ∈ R
k such

that

δij = ‖xi − xj‖ (2)

if and only if

H = −1
2
EnΔ(2)En

is nonnegative definite and rk(H) ≤ k. In this case, the rows

of any (n × k)-matrix X decomposing H as H = XXT

may be taken as a configuration satifying (2).

The results of [8] are now briefly summarized. In general,

the distance matrix of the first configurations in Figure 1, 2

and in Figure 3 is of the following type

Δ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b · · · b 1 2 · · · 2
b 0 · · · b 2 1 · · · 2
...

. . .
...

...
. . .

...

b b · · · 0 2 2 · · · 1

1 2 · · · 2 0 a · · · a
2 1 · · · 2 a 0 · · · a
...

. . .
...

...
. . .

...

2 2 · · · 1 a a · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

where the upper left block refers to the distance b between

transmitters and the lower right to the distance a between

receivers. The off-diagonal blocks comprise the pairwise

distances between transmitters and receivers which for the

purpose of full interference alignment have to be 1 or 2,

respectively. Writing

Δ(2) =
(

α11In + β111n×n α12In + β121n×n

α12In + β121n×n α22In + β221n×n

)
(4)

with

α11 = −b2, β11 = b2,

α12 = −3, β12 = 4,

α22 = −a2, β22 = a2.

yields

−1
2
E2nΔ(2)E2n

= −1
2

(
α11In + δ111n×n α12In + δ121n×n

α12In + δ121n×n α22In + δ221n×n

) (5)

with parameters

δ11 = −3α11

4n
− α12

2n
+

α22

4n
+

β11

4
− β12

2
+

β22

4
,

δ12 = −α11

4n
− α12

2n
− α22

4n
− β11

4
+

β12

2
− β22

4
,

δ22 = −3α22

4n
− α12

2n
+

α11

4n
+

β11

4
− β12

2
+

β22

4
.

Now, let

c =
8n− 6
n− 1

,

and

a =

√
c

2
−

√
c2

4
− 9, b =

√
c

2
+

√
c2

4
− 9.

Then, as shown in [8], matrix (5) is nonnegative definite and

has rank n−1, such that according to Theorem 1 a Euclidean

embedding in n− 1 dimensions exists. Any decomposition

−1
2
E2nΔ(2)E2n = XXT

for some 2n × (n − 1)-matrix X yields a configuration of

transmitters (the first n columns) and receivers (the last n
columns) which allows for complete interference alignment.

III. MAIN RESULT

In this section, we show that the principle of placing stations

as in the second examples of Figure 1 and 2 does not general-

ize to higher dimensions. This holds true even for dimension

three so that there is no complementary construction to the

one in Figure 3.

The distance matrix is now assumed to be of type

Δ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b · · · b 2 1 · · · 1
b 0 · · · b 1 2 · · · 1
...

. . .
...

...
. . .

...

b b · · · 0 1 1 · · · 2

2 1 · · · 1 0 a · · · a
1 2 · · · 1 a 0 · · · a
...

. . .
...

...
. . .

...

1 1 · · · 2 a a · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6)



where a and b have the same interpretation as in (3). Des-

ignated packets arrive in even time slots while unintended

packets jointly interfere in odd time slots.

Δ(2) may be written likewise in equation (4), now with

parameters

α11 = −b2, β11 = b2,

α12 = 3, β12 = 1,

α22 = −a2, β22 = a2.

− 1
2E2nΔ(2)E2n still has the form (5) with parameters

δ11 = −3α11

4n
− α12

2n
+

α22

4n
+

β11

4
− β12

2
+

β22

4
,

δ12 = −α11

4n
− α12

2n
− α22

4n
− β11

4
+

β12

2
− β22

4
,

δ22 = −3α22

4n
− α12

2n
+

α11

4n
+

β11

4
− β12

2
+

β22

4
.

Now, assume that there exists a Euclidean embedding in

dimension n− 1, i.e., there exists some (2n× (n− 1))-matrix

X such that

−1
2
E2nΔ(2)E2n = XXT. (7)

The rows of matrix X are the coordinates of corresponding

stations in R
n−1. Corresponding to transmitters and receivers

two (n× (n− 1))-matrices are formed comprising X as

X =
(

XT

XR

)
.

The rows of XT represent the coordinates of transmitters, and

the rows of XR the coordinates of receivers in R
n−1.

Generalizing the principles of the second examples in

Figures 1 and 2 to higher dimensions entails the following

conditions. Firstly, both transmitters and receivers are centered

at the the same point, without loss of generality the origin,

hence

1T
nXT = 0T

n−1 and 1T
nXR = 0T

n−1. (8)

Secondly, transmitters are lying in a symmetric fashion oppo-

site of the receivers, formalized by

XT = −γ XR for some γ > 0. (9)

Recall that

E2nΔ(2)E2n =
(

α11In + δ111n×n α12In + δ121n×n

α12In + δ121n×n α22In + δ221n×n

)
.

By representation (7) and condition (8) we obtain that

α11 + nδ11 =
n− 1

4
(
a2 + b2

)− n + 3
2

= 0

Hence, a and b must be chosen to satisfy

a2 + b2 =
2(n + 3)
n− 1

. (10)

Furthermore, let the columns of XR be denoted by

XR = (x1, . . . ,xn−1)

where x1, . . . ,xn−1,1n are pairwise orthogonal. Condition

(9) implies that

(−γxi

xi

)
are eigenvectors of − 1

2E2nΔ(2)E2n

for some positive eigenvalue αi, i = 1, . . . , n− 1.

A complete set of 2n orthogonal eigenvectors is hence

obtained as(
1n

0n

)
,

(
0n

1n

)
,

(
x1

γx1

)
, . . . ,

(
xn−1

γxn−1

)
,

(−γx1

x1

)
, . . .

(−γxn−1

xn−1

)
,

where, by the dimensionality constraint the first (n + 1)
eigenvectors(

1n

0n

)
,

(
0n

1n

)
,

(
x1

γx1

)
, . . . ,

(
xn−1

γxn−1

)
,

correspond to eigenvalue 0.

Hence,

−b2 + 3γ = 0

3− γa2 = 0

which in turn gives

γ =
b2

3
and 3− a2b2

3
= 0

and finally

a2b2 = 9. (11)

The unique solution of (10) and (11) is

an =

√
cn

2
−

√
c2
n

4
− 9

and

bn =

√
cn

2
+

√
c2
n

4
− 9

with

cn =
2(n + 3)
n− 1

denoting the right hand side of (10).

Particularly, for n = 2 (4 stations on a line) the solution is

c2 = 10 and a2 = 1, b2 = 3,

in concert with the second configuration of Figure 1. For n = 3
(6 stations on a plane) the values are

c3 = 6 and a3 = b3 =
√

6,

forming a hexagon like in Figure 2.

For n ≥ 4 it holds that

c2
n

4
− 9 < 0

such that there is no solution an, bn of (10) and (11) in the

real numbers. Summarizing the results so far we have shown

the following.



Theorem 2: If n ≥ 4, n transmitter-receivers pairs cannot

be placed in n − 1 dimensions with distance matrix (6) such

that symmetry conditions (8) and (9) hold.

In dimension 1 and 2 however, corresponding configurations

are determined above and shown in Figures 1 and 2.

However, as shown in [8], if the distance matrix is given

by (3) then an n− 1 dimensional Euclidean embedding of n
transmitter-receiver pairs exists for any n ≥ 2.

IV. CONCLUSIONS

In this paper, we have addressed the question of embedding

2n stations, i.e., n designated links of a transmitter-receiver

pair each, in the (n−1)-dimensional Euclidean space such that

complete interference alignment can be achieved by delay. In a

previous paper it has been shown that this is always possible by

locating stations onto the vertices of triangles, tetrahedrons and

higher-dimensional analogues. In dimension one and two there

is a complementary construction, yielding a regular hexagon as

locations on a plane. Interestingly, this cannot be generalized

to dimensions greater than 2, as is shown in the present paper.
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