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Abstracr--In this paper, we deal with the uplink outage probability for a 
UMTS cellular network at a reference base station equipped with a smart 
antenna. Users are assumed to be distributed according to a planar Poisson 
point proce:rs. Their respective transmission rates are modeled by indepen- 
dent random variables. This leads to a compound Poisson process for the 
total data rate to be served in a cell by code division multiplexing. Outage 
occurs if the total rate exceeds the effective chip rate (3.84 MChipk divided 
by the minimum required bit energy to noise power ratio). Circulant ma- 
trices, a normal approximation, and Monte Carlo integration are employed 
to determine the outage probability as a performance parameter of the sys- 
tem. 
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I .  INTRODUCTION 

ODE division multiple access (CDMA) is interference lim- C ited. Third generation UMTS networks in Europe will 
mainly use this technology such that model based investigations 
of the total interference at base stations is of uttermost impor- 
tance for design and deployment purposes. 

In this paper, we focus on the uplink (mobile to base station). 
The uplink is generally accepted to demand for a careful plan- 
ning since the available resources of mobile stations are a limit- 
ing factor in mobile networks. We are particularly interested in 
the point where the sum of all signal powers exceeds a certain 
threshold such that the required bit error rate cannot be main- 
tained simultaneously for all connected stations. 

A number of investigations in the literature deals with the 
problem of determining the total interference for spatially Pois- 
son distributed traffic. In [ I ]  the total interference is calculated 
numerically, under assumptions of uniform traffic pattern, regu- 
lar triangular grid of base stations, log-normal shadowing, soft 
hand-over and power control. However, mobiles are not taken 
to be discrete entities, but are approximated by a continuous dis- 
tribution instead. Earlier work on interference characterization 
for Poisson traffic appeared in [ 2 ] ,  [3], however, without assum- 
ing a cellular network structure. Approximations using the first 
two moments have been carried out in [4] and [5] under Poisson 
traffic assumptions, log-normal shadowing and power control. 
Other planar stochastic traffic models and adaptive antennas are 
included in [6]. The distribution function of a mobile’s power 
received at a reference base station is obtained in [7] ,  taking ac- 
count of distance, shadow attenuation and power control. 

None of the above approaches, however, takes different trans- 
mission rates for particular users into consideration. This is par- 
ticularly assumed in the present paper. Moreover, the effect of 
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smart antennas is included such that interference may be re- 
duced by separating different users by distinct antenna beams. 
In order to keep the model analytically tractable a simple cir- 
cular cell shape is assumed and only intra-cell interference is 
considered. Other cell interference is included in the general 
background noise. A reasonable upper bound for the sum of’ 
all correctly decodable data rates at a base station is the effec- 
tive chip rate defined as the used chip rate divided by the least 
allowable &/NO ratio. Assuming spatially Poisson distributed 
users, each marked with a random data rate requirement, we in- 
vestigate the outage probability, i.e., the probability that there is 
a beam of fixed width containing a set of users with a total trans- 
mission rate higher than the effective chip rate of the system. 

11. THEMODEL 

Future universal mobile telecommunication systems (UMTS) 
in Europe will use a constant chip rate of w = 3.84 MChip/s. 
Mobiles of different transmission rate requirements d i  share the 
same channel in the uplink by using nearly orthogonal code se- 
quences. After despreading and filtering the bit energy-to-noise 
power ratio for each user is obtained as 

where si = w/d i  denotes the spreading factor. Let elnin be 
defined as the minimum required Eb/No. For a sufficient trans- 
mission quality each user should achieve 

e,i, = 5dB = 3.16. 

For the type of services provided by 3G mobile networks 
widely varying transmission rates will be typical. The data rate 
required by user i is modeled by i.i.d. random variables D i. The 
corresponding spreading gain is obtained as Si = w / D i .  Each 
user applies power control and transmits with the minimum 
power necessary to achieve the required Eb/No = S i ( C / I ) .  
In this situation, i t  is quite natural to assume that outage hap- 
pens latest if the total data rate of all stations connected to a 
base station exceeds the effective chip rate w‘ = w/e,in. 

In order to analyze the performance of such systems, we con- 
sider a circular cell of radius r corresponding to a reference base 
station located at the center. Furthermore, we assume that users 
are scattered according to a two-dimensional Poisson point pro- 
cess with intensity X (see Fig. 1). Then the number of users in 
the circle segment between the rays at angle 0 and t ,  0 5 t < 27r 
forms an homogeneous one-dimensional Poisson process N t  
with intensity A’ = Ar2/2 .  Hence, the sum of all data rates 
of users in the circle segment from 0 to t ,  0 5 t < 271. is given 

0-7 803-7OO5-8lO 1 I$lO.OO 0 200 1 IEEE 934 

mailto:stochastik.rwth-aachen.de


A. Normal Approximation 

Let the interval [0,27r) be divided into n subintervals of equal 
length, and let 

0 

Fig. I .  A circular cell with the base station in the middle. Black dots indicate a 
spatial random process of users with random transmission rates 4, . . . , D7. 

by 
Nt 

X t  = Di. (1) 

?it is a so called compound Poisson process, it has independent 
increments, and hence is Markovian (see, e.g., [SI). 

i=l 

Example. Assume an omnidirectional antenna and two dif- 
ferent classes of users with transmission rates dl = 30 KBit/s 
and dz = 60 KBit/s. Users are distributed according to indepen- 
dent spatial Poisson processes of intensity Xi,  i = 1,2.  Random 
variables Ni count the number of each type in the cell. N i  are 
Poissonian with parameter = A i m 2 ,  and Xzr  from (1) may 
be written as 

X2= = Nidi + N2d2. 

The corresponding outage probability is given by 

P(N1di + N2d2 > U’)  

which can be determined numerically. rn 

From now on, we assume that a smart antenna is deployed at 
the BTS, forming a receive beam of angle /?, and filtering out 
all interference from stations outside the beam. Under the above 
assumptions outage happens in a fixed beam of width /3 with 
base line at angle t ,  t 5 27r - ,B if 

If t + p > 27r extend Ip ( t )  cyclically as 

I P ( t )  = It+p--aa(O) + I-an--t(t). 

The probability that no outage occurs in the whole cell is hence 
given by 

P ( l p ( t )  5 W/emin for all o 5 t < 27r). (2)  

In the following we aim at determining probability (2). For 
this purpose we consider two distinct approaches. 

denote the increment of (1) in the k-th interval with X o  = 0. 
11,  . . . , I ,  are i.i.d. random variables, whose distribution de- 
pends on the distribution of D i ,  A’, and n .  A discrete approxi- 
mation to ( 2 )  is given by the following 

with c = w/e,,,i,. ( 3 )  is built by adding k cyclically shifted 
terms, respectively. Let C = C(n,  k )  denote the circulant ma- 
trix whose first row is given by k l’s followed by n - k 0’s (for 
circulant matrices cp. [9]), and define 

I = (11,. . . ,I,)’ and X = C(n, k ) I .  

Then (3) reads as 

where the inequality sign is to be understood componentwise 
and 1, denotes the n-vector of ones. From Campbell’s theorem 
(see [lo]) it follows that 

Hence, for the expectation vector and the covariance matrix of 
I we get 

B(n, k) = C(n,  k)C’(n,  k )  is a n x n circulant matrix with 
first row 

(k, ( k  - I)+, . . . , ( k  - n/2)+, ( k  - n /2  + I), 
. . . , k - 1) , for n even, 

b = {  ( k ,  ( k  - I)+, . . . , ( I C  - (n  - 1)/2)+, 
( k  - (n  - 1)/2), . . . ,IC - I ) ,  for n is odd. 

z+ = max(0, z} denotes the positive part. B(n, k )  is regular 
if and only if C(n, k )  is. It can be shown that this is the case iff 
(1, n) = 1, i.e., 1 and n are relatively prime. 

In Section I11 a normal approximation for X with expectation 
(5) and covariance (6) is applied to determine probability ( 2 )  for 
finite n and k. 
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B. Monte Carlo Approximation 

Generalizing the approach in [6]  we may write (2) as 

P(Io ( t )  5 w/e,i, for all o 5 t < 2n) 

Service Class B 0.1 
LCD 144 0.9 

We now briefly sketch the proof of Equation (7). Conditional on 
the number k of users in the whole cell, the angular coordinates 
in increasing order are distributed as the order statistics of k 
independent, on [0,27~) uniformly distributed random variables. 
We furthermore condition on the respective locations t 1 5 3 . . I 
t k  and the independent data rates d l ,  . . . , dk. It clearly holds 
that Io@) 5 w' for all 0 5 t < 2x if and only if the sum 
of all data rates d j  corresponding to locations t j  in the interval 
[ti - p, t i )  does not exceed U' for all i = 1 , .  . . , k .  Because of 
cyclic repetition, in case of ti - p < 0 the sum of all d j  with t j  

in any of the intervals [0, t i)  or [27r + ti - /3,27r) must not be 
greater than U ' .  The integrand in (7) is combined of indicator 
functions which yields a 1 iff none of the above sums is greater 
than U' and 0, otherwise. Successive integration and summation 
over the respective joint distribution gives probability (7). 

Monte Carlo methods described in Chapter 5 in [ 1 11 are used 
to evaluate Equation (7) numerically. 

0.2 0.3 
0.8 0.7 

111. NUMERICAL RESULTS 
To obtain numerical values for the outage probability (4) 

under different parameters, complicated high-dimensional inte- 
grals must be evaluated. 

In order to compute probability (4), an extension of the algo- 
rithm in [ 121 has been employed. This algorithm makes exten- 
sive use of Monte Carlo integration. In Figure 2, the correspond- 
ing results are compared with direct Monte-Carlo approximation 
of (7). In general, the outage probabilities obtained by the sec- 
ond approximation method are greater, and hence underestimate 
the performance of the system. The difference between the two 
approximations decreases with increasing radius T of the cell. In 
the following we confine ourselves to the second method (7). 

Three types of services are of interest as proposed in [13], 
namely 

I I Bit rates (kb/s) I 

Service Class B 
LCD 144 144 

The outage probability is calculated as a function of the radius 
T (1.2 km <_ T <_ 2.4 km) of the cell. In Figure 3, four different 

- L s ,  Monte Carla appmx 

1.7, Monte Carlo appmx 
U 1.7. Normal appmx 

0 7 t  1 

&- 0.5 

r=cell radius 

Fig. 2. Outage probability versus the radius of the cell, the two approximation 
methods are compared. 

Poisson process with X = 5 , 7 , 9 , 1 1 , 1 3  userslkm', respectively, 
are considered. The bit rate service distribution is uniform, 
namely P[bit rate = 81 = P[bit rate = 641 = P[bit rate = 
1441 = 1/3. 

r=cell radius 

Fig. 3. 
5 ,7 ,9 ,11,13.  

Outage probability versus the radius of the cell, for intensities X = 

As expected, the greater the radius (or intensity), the greater 
the outage probability. In Figures 4 and 5 we compare the outage 
probability if only two types of services are of interest. The 
corresponding weights are as follows. 

In Figure 4 and Figure 5 a traffic intensity of X = 5 and X = 7 
respectively is set. 

As expected the greater the contribution of users with a high 
data rate, the greater the outage probability. When comparing 
Figure 4 to 5 we obtain Figure 6 where the differences between 
corresponding outage probabilities are plotted. First there exists 
an identical behavior between three curves when the intensity is 
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Fig. 6. Coinparison of outage probabilities for different weights Fig. 4. Outage probability versus the radius of the cell, (0.1,0.9), (0.2,O.S) 
and (0.3,0.7) are the weights of services of (64,144) kbk, X = 5. 
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Fig. 5. Outage probability versus the radius of the cell, (0.1,0.9), (0.2,0.8) 
and (0.3,0.7) are the weights of services of (64,144) kb/s, X = 7. 

fixed. The difference first increases to reach a maximum point 
and then this difference decreases again. The maximum point 
corresponds to two different radii according to the intensity X at 
which the outage probability is evaluated. 
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