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Abstract—We present a high SNR analysis of the rate region
geometry when linear filtering is applied in the MIMO broadcast
channel and time sharing is not considered. In particular, the set
of weakly Pareto optimal points of the asymptotic rate region
is derived. While all different permutations of user sorting have
to be investigated for the complete rate region when nonlinear
dirty paper coding is applied, we show that the analogon to

different sorting orders is the number of active streams per
user when linear filtering is applied. Furthermore, we reveal
that only a small fraction of weakly Pareto optimal points is
in charge of maximizing an asymptotic weighted sum rate and
points belonging to that fraction are all obtained when every
user applies full multiplexing. In contrast, switching off some
data streams may be optimal when it comes to balancing or
maximizing a user’s rate while keeping the other users’ rates
constant. Many of the derived results are not only applicable
to systems with enough antennas at the base station, but also
to configurations with too few degrees of freedom, which so far
have never been discussed in any asymptotic analysis before.

I. INTRODUCTION

The analysis of the capacity region of the MIMO broadcast

channel has so far been limited to the case when dirty

paper coding is applied with activated time sharing, see for

example [1], [2]. Under this setup, the convex hull of the rate

region can easily be obtained by means of a weighted sum rate

maximization, since the weighted sum rate is then a concave

utility, and many globally optimum algorithms solving this

optimization are meanwhile available, see [3], [4], [5], and [6].

In case of linear filtering, even the convex hull of the rate

region with enabled time sharing is hard to compute since

the unweighted sum rate maximization is already noncon-

cave [7]. Although the algorithm in [7] can straightforwardly

be extended to the case of different weights, the rate region

itself without time sharing or convex hull operation is still

an open problem. This deflating circumstance is fortunately

alleviated in the high power regime. Early work focused on

the maximization of the weighted sum rate in the ergodic

case when multi-antenna terminals are involved [8], [9], and

the extension for instantaneous channel realizations was given

in [10], [11]. There, a novel rate duality for linear filtering was

used [12], and the dual multiple access system was investigated

instead of the original broadcast channel system. However, the

weighted sum rate approach inherently allows only to compute

the convex hull of the region and not the region itself. Our

contribution is a description of the weakly Pareto optimal
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points of the asymptotic rate region without activated time

sharing. We show that only specific stream allocations and

transmit covariance matrices are relevant for the border of the

rate region.

Notation: Matrices and vectors are upper and lower case

bold, respectively. SM denotes the set of M × M positive

semidefinite matrices and IM is the M × M identity matrix.

The operators ‖ · ‖F,







·







, and (·)H stand for Frobenius norm,

determinant, and Hermitian transposition, respectively.

II. SYSTEM MODEL AND DEFINITIONS

Recent results on the rate duality between the MIMO broad-

cast channel (BC) and the MIMO multiple access channel

(MAC) allow us to switch from the original broadcast channel

to a dual multiple access channel with the same sum power

constraint, see [12]. Since both rate regions are congruent,

we can characterize the broadcast channel rate region by

analyzing the multiple access channel region. This dual MAC

has the advantageous property that less variables are required

to express the transmit matrices than in the BC. Moreover, if

a user transmits as many data streams as he has antennas, the

MAC transmit covariance matrix will have full rank, which

can be exploited in the rate expression formula. In the BC,

however, the transmit covariance matrix for a particular user

will never be full rank if the base station has more antennas

than every user. Let Tk ∈ CMk×Bk denote the precoding

matrix of user k in the dual MAC which maps the Bk dimen-

sional symbol vector sk onto his Mk antennas. The precoded

symbol vector Tksk then propagates over the frequency flat

channel Hk ∈ CN×Mk . At the N -antenna receiver, zero-mean

Gaussian noise η ∈ CN with identity covariance matrix is

added. Unless otherwise noted, we make the assumption that

the base station has at least as many antennas as the user

terminals have in sum, i.e., N ≥ M :=
∑K

k=1 Mk. We will

frequently make use of the following definitions:

Definition II.1. Two functions f and g are said to be weakly

asymptotically equivalent, if

lim
P→∞

f(P )

g(P )
= 1,

and we shall use the notation f + g.

A stricter definition is the following:



Definition II.2. Two functions f and g are said to be strongly

asymptotically equivalent, if

lim
P→∞

[

f(P ) − g(P )
]

= 0,

and we shall use the notation f ∼= g.

Note that strong asymptotic equivalence always implies weak

asymptotic equivalence (unless g(P ) = 0 independent of P ).

The converse, however, is usually not true.

III. RATE REGION GEOMETRY AT HIGH SNR

The rate region under linear filtering corresponds to the

union of all rate tuples that are feasible under a sum power

constraint P and a fixed number of active streams per user.

Note that the union is taken over all meaningful active stream

allocations that satisfy Bk ≤ Mk and
∑K

k=1 Bk ≤ N . In

other words, no user may have more active data streams than

he has antennas and the total number of active data streams

is upper bounded by the number N of antennas at the base

station, which is then automatically fulfilled by our assumption

N ≥ M . Due to our focus on the high SNR regime, only

few stream allocations actually contribute to the weakly Pareto

optimal points of the rate region. In the two user case, those

relevant allocations are characterized by the property that at

least one user has to apply full multiplexing whereas the

other user may have zero up to his number of antennas active

streams. This can easily be understood by noticing that the

set of feasible rate pairs in a two user system at high SNR

where each user has only one active stream is a subset of the

rate tuples that are feasible when both users have two active

streams. Of course, both users need to be equipped with at

least two antennas in that case.

For simplicity, we restrict ourselves to the rate region of the

two user case. Under linear filtering and Gaussian signaling,

user one sees interference from user two and vice versa. Thus,

the rates of the two users can be expressed as

R1 = log2













IM1
+ HH

1 (IN + H2Q2H
H
2 )−1H1Q1













,

R2 = log2













IM2
+ HH

2 (IN + H1Q1H
H
1 )−1H2Q2













,
(1)

where Qk := TkT H
k ∈ SMk

is the transmit covariance matrix

of user k.

A. Full Multiplexing of All Data Streams

As will be shown later, full multiplexing is the optimum

transmission strategy when the rates of both users are large,

which can only be achieved if all eigenvalues of Q1 and

Q2 grow beyond all limits with increasing P . Under this

assumption, the two inverses in (1) are strongly asymptotically

equivalent to the projector

(IN +HkQkHH
k )−1 = IN −Hk(Q

−1
k +HH

k Hk)−1HH
k

∼= IN −Hk(H
H
k Hk)−1HH

k

(2)

with k ∈ {1, 2} in the sense of Definition II.2. Using (2), the

rate pair R1 and R2 is strongly asymptotically equivalent to

the rate pair

R′

1 = log2













IM1
+HH

1 (IN −H2(H
H
2 H2)

−1HH
2 )H1Q1













,

R′

2 = log2













IM2
+HH

2 (IN −H1(H
H
1 H1)

−1HH
1 )H2Q2













.
(3)

Obviously, R′

k < Rk, but in the asymptotic limit the difference

Rk − R′

k is zero, and therefore, Rk
∼= R′

k. Allocating powers

p1 and p2 = P − p1 to users one and two, respectively, the

optimum transmit covariance matrices Q1 and Q2 share the

same eigenbases as their respective projected channel Grams

and their power allocation follows from the single-user water-

filling principle with power p1 or p2, see [13] for example.

Theorem III.1: For a system where every user applies full

multiplexing and the base station is equipped with enough

antennas, the weakly asymptotically optimum mode power

allocation is uniform and therefore, the weakly asymptotically

optimum transmit covariance matrices are scaled identities

whose traces grow beyond all limits with increasing total

transmit power.

For the proof, we use the fact that the two rate expressions R′

1

and R′

2 in (3) are not coupled by the two transmit covariance

matrices Q1 and Q2, as long as all eigenvalues of Q1 and Q2

grow beyond all limits when P → ∞. Given this property, the

water-filling power allocation is optimum with respect to (3),

and the water-levels grow beyond all limits as long as both

p1 → ∞ and p2 → ∞. Since the difference of two mode

powers for a particular user does not depend on the water-level

but solely on the inverse eigenvalues of the projected channel

Gram H̄H
i H̄i (see [13]), the power allocation of different

modes is never strongly asymptotically equivalent to a uniform

power allocation (unless all eigenvalues of H̄H
i H̄i are equal).

Note that H̄1 = (IN−H2(H
H
2 H2)

−1HH
2 )H1 represents the

channel H1 of user one that has been projected into the null

space of H2 and the same holds for H̄2 with reversed indices.

However, the mode power allocation is affine and scales

linearly with the water-level. Therefore, the ratio of two mode

powers tends to one when the water-level goes to infinity and

the power allocations is thus weakly asymptotically equivalent

to a uniform power allocation, for which the eigenbasis of Qi

may be chosen freely.

Although a uniform mode power allocation for Q1 and Q2

according to

Q1 =
p1

M1
IM1

and Q2 =
p2

M2
IM2

is only weakly asymptotically equivalent to the optimum one,

the resulting rate expressions

R′′

k = Mk log2 pk − Mk log2 Mk + log2








H̄H

k H̄k








(4)

are strongly asymptotically equivalent to R1 and R2, which is

due to the properties of the log operator. Of course, (4) is only

meaningful for those power allocations p1 and p2 = P − p1,

where the resulting expressions R′′

1 and R′′

2 are not negative.

Since we neglected the identity in (3) to get (4), small values

for p1 and p2 are not allowed in (4). However, we are again



only interested in large rate pairs R′′

1 and R′′

2 that increase

with P beyond all limits. For those, the difference Rk − R′′

k

again goes down to zero as P → ∞.

B. Less Active Streams Than Antennas

Not all possible stream configurations contribute to the

weakly Pareto optimal points of the asymptotic rate region,

when less streams are active than antennas are available at the

user terminals. In the two user case, at least one user has to

multiplex as many data streams as he can, whereas the other

user may have zero up to his number of antennas minus one

active streams. Without loss of generality, we now assume that

user one applies full multiplexing with B1 = M1 whereas user

two has B2 < M2 active streams. The reversed case can easily

be obtained by interchanging indices. We focus on that part

of the rate region where the rate of user one is very large with

a multiplexing gain larger than M1−1 (for nonlinear power

allocations, the multiplexing gain can be noninteger), whereas

the rate of user two varies from zero to the maximum value

which is achievable with B2 active streams. For this part, the

covariance matrix Q1 will have eigenvalues that grow beyond

all limits with increasing sum power P , and the rate of user

two is therefore strongly asymptotically equivalent to

R′

2 = log2








IB2

+ T H
2 H̄H

2 H̄2T2








, (5)

with Q2 =T2T
H
2 and the projected channel matrix H̄2, cf. the

second equation in (3). Hence, the asymptotic rate of user two

again depends only on his own beamforming matrix T2, and

not on Q1. The asymptotic rate of user one, however, also

depends on T2 because the rank of T2 is smaller than M2.

Hence, Q2 is not invertible and the projector approximation

from (2) does not work. Using the first equation in (1)

and neglecting the identity inside the determinant due to the

assumption that Q1 has very large eigenvalues, the rate of user

one R1
∼= R′

1 is now strongly asymptotically equivalent to

R′

1 = log2








Q1








+ log2








HH

1 (IN +H2T2T
H
2 HH

2 )−1H1








.

Some modifications lead to

R′

1 = log2








Q1








+log2








HH

1 H1








+log2








I+T H

2 H̄H
2 H̄2T2
















I+T H

2 HH
2 H2T2









(6)

where R′

2 from (5) can be identified to be part of R′

1 in (6).

Letting user two have B2 active streams, the rate pairs that are

weakly Pareto optimal are obtained by finding the maximum

asymptotic rate R′

1 given R′

2 and afterwards varying R′

2. For

the asymptotic target rate R′

2,target, the optimization reads as

maximize
Q1,T2

R′

1 s.t.: R′

2 = R′

2,target, T2 ∈ C
M2×B2 ,

Q1 ≻ 0, tr(Q1) + ‖T2‖2
F ≤ P.

(7)

Since only the determinant of Q1 is relevant, we may choose

Q1 = (P −‖T2‖2
F)/M1 ·IM1

without loss of optimality. Then,

(7) reduces to

maximize
T2∈CM2×B2

(P − ‖T2‖2
F)M1








I + T H

2 HH
2 H2T2









s.t.:







I + T H

2 H̄H
2 H̄2T2








= 2R′

2,target , ‖T2‖2
F ≤ P.

(8)

In this contribution, we cover the case with one active stream

(B2 = 1) for user two in detail, whereas the setup with more

active streams (B2 ≥ 2) can be solved analogously by means

of a projected gradient algorithm. However, the identities in

the determinants in (8) have to be neglected then such that

the multi-stream precoder solution is only applicable to large

target rates R2,target, for which the eigenvalues of the resulting

matrix product T H
2 H̄H

2 H̄2T2 are large compared to one. Note

that the following analysis can also be applied if the base

station has only N = M1 + 1 antennas, which is less than

M = M1 + M2 in general. When B2 = 1, the beamforming

matrix T2 reduces to the vector t2 which we split into its unit

norm part u2 and its norm
√

p2 via t2 =
√

p2u2. The rate

constraint in (8) is then satisfied by choosing

p2 =
c2

uH
2 H̄H

2 H̄2u2
(9)

with the substitution c2 := 2R′

2,target − 1. Reinserting this into

the utility in (8) and dividing by PM1 yields

µ(u2) =
[uH

2 (H̄H
2 H̄2 − c2

P
I)u2]

M1

(uH
2 H̄H

2 H̄2u2)M1−1uH
2 (H̄H

2 H̄2+c2H
H
2 H2)u2

which is independent of the norm of u2, so the optimum

u2 that maximizes µ(u2) can afterwards be scaled such that

‖u2‖2 = 1. The rate of user one then asymptotically reads as

[cf. (6)]

R′

1 = M1 log2

P

M1
+log2








HH

1 H1








+R′

2+log2 µ(u2). (10)

If user one has only a single antenna, i.e., M1 = 1, then the

optimum unit norm beamformer ǔ2 maximizing µ(u2) is the

principal eigenvector of the matrix

[

H̄H
2 H̄2+c2H

H
2 H2

]−1
(

H̄H
2 H̄2−

c2

P
I

)

, (11)

and the resulting power allocation for user two follows from

(9) with u2 replaced by its optimum ǔ2. When user one is

equipped with more than one antenna, the utility µ(u2) can be

maximized by computing a sequence of principal eigenvectors,

which will be explained in the following. With appropriate

matrix substitutes, µ(u2) can be expressed via

µ(u2) =
(uH

2 Au2)
M1

(uH
2 Bu2)M1−1uH

2 Cu2
. (12)

Maximizing µ(u2) with respect to u2 leads to the Karush-

Kuhn-Tucker condition for the optimum unit-norm beam-

former ǔ2, which reads as
[

M1β
M1−1C−1A−(M1−1)βM1C−1B

]

ǔ2 = µ(ǔ2)ǔ2, (13)

where the substitute β is defined via

β :=
ǔH

2 Aǔ2

ǔH
2 Bǔ2

.

Due to the dependency of β on ǔ2, the scalar weights

βM1−1 and βM1 are not known in advance, and the optimum

beamformer ǔ2 thus cannot be found in closed form. However,



an iterative principal eigenvector computation leads to the

desired beamformer. In iteration n, the matrix on the left hand

side of (13) is evaluated for u2 = u
(n)
2 instead of u2 = ǔ2,

and the corresponding principal eigenvector of this matrix is

then chosen as the beamformer u
(n+1)
2 for the next iteration:

K(n)u
(n+1)
2 = λ(n+1)u

(n+1)
2 .

In above equation, K(n) is defined via

K(n) = M1

(

β(n)
)M1−1

C−1A−(M1−1)
(

β(n)
)M1

C−1B,

with the substitute

β(n) :=
u

(n)H
2 Au

(n)
2

u
(n)H
2 Bu

(n)
2

.

In the limit n → ∞, the maximum eigenvalue λ(n+1)

converges to the objective µ(ǔ2) and u
(n+1)
2 converges to

the beamformer ǔ2. The monotonic convergence of the utility

µ(u2) can be shown in a similar fashion as it has been done

in [14].

We will now present a functional relationship between the

asymptotic rates R′

1 and R′

2 for small R′

2. Close to the

axis R2 = 0, the target rate R′

2,target for user two is very

small, and consequently, c2 is close to zero as well. If c2 is

furthermore divided by a large P , we can safely approximate

H̄H
2 H̄2−c2/P I by H̄H

2 H̄2, and the maximizer of µ(u2) then
corresponds to the principal eigenvector z of the matrix

[

HH
2 H2

]−1
H̄H

2 H̄2 (14)

whose eigenvalues are upper bounded by one, since H̄2 is a

projected version of H2 and max{0, M2 − M1} eigenvalues

are equal to one with probability one. Note that the choice

u2 = z maximizes the utility µ(u2) for all target rates for

which the approximation that neglects c2/P I is accurate. Let λ
denote the maximum eigenvalue of the matrix in (14). Close to

the axis R2 = 0, the utility µ(z) follows the strong asymptotic

equivalence

log2 µ(z) ∼= log2

1

1 + c2

λ

= −R′

2,target − log2

( 1

λ
+

1 − 1
λ

2R′

2,target

)

,

and the functional relationship between R′

1 and R′

2 can be

expressed for u2 = z and R′

2 = R′

2,target as [see (10)]

R′

1
∼= M1 log2

P

M1
+log2








HH

1 H1








−log2

( 1

λ
+

1 − 1
λ

2R′

2,target

)

.

Deriving the right hand side of above equation with respect to

R′

2,target and evaluating the result at R′

2,target = 0 yields 1− 1
λ
.

Therefore, the border of the rate region hits the axis R2 = 0
with the angle

ϕ = arctan
( λ

1 − λ

)

. (15)

For λ = 1, which happens if M2 > M1 as said before, the

border of the asymptotic rate region is perpendicular to the

axis R2 = 0.

IV. ASYMPTOTIC WEIGHTED SUM RATE MAXIMIZATION

In [11], the following theorem is proven:

Theorem IV.1: For any strictly positive constant weight vec-

tor w > 0, the weighted sum rate is asymptotically maximized

when every user multiplexes as many data streams as he has

antennas given the base station has at least as many antennas

as the users have in sum. Furthermore, a linear power

allocation and scaled identities are the optimum transmission

strategy.

Intuitively, this can be explained as follows. Since every active

stream contributes to the weighted sum rate via wi log2 P for a

linear power allocation if the stream belongs to user i [7], there
is a threshold power PTh above which the weighted sum rate

is larger when all data streams are active compared to the case

when some users do not apply full multiplexing. Of course,

this requires the base station to have at least as many antennas

as the user terminals have in sum.

Only a small fraction of the asymptotic rate region boundary

constitutes the maximizers of the asymptotic weighted sum

rate, and as mentioned before, these rate tuples are obtained by

the full multiplexing stream configuration with a linear power

allocation. A consequence of the linear power allocation is

that any weighted sum rate maximizing transmission strategy

for a positive weight vector w > 0 achieves a multiplexing

gain of
∑K

k=1 Mk. The graphical interpretation is that the

rate region whose axes are divided by log2 P is weakly

asymptotically equivalent to a hyper-cuboid with edge length

Mk for axis k. However, strong asymptotic equivalence does

not hold there, since first, the ‘edge’ with maximum individual

rates is rounded off even for infinite transmit power, and

second, close to the axis R2 = 0 in the two user case, user one

can achieve a larger rate when user two applies single stream

beamforming instead of full multiplexing, see Fig. 1. Summing

up, all weighted sum rate maximizers asymptotically achieve

rate tuples that lie on the rounded off corner and achieve the

maximum multiplexing gain.

V. GRAPHICAL VISUALIZATION

To illustrate the geometry of the border of the rate region in

the asymptotic case, we choose a scenario where a base station

with N = 5 antennas receives data in the dual MAC from

two users with two antennas each. In Fig. 1, the sum power

is set to 10 log10 P = 40dB. The dashed curve corresponds to

the exact rate pairs that are achieved for transmit covariance

matrices Q1 = p1/M1 · IM1
and Q2 = (P − p1)/M2 · IM2

according to (1) when p1 is swept from zero to P . Obviously,

the stream allocation for this curve is [2/2], so both users

have two active streams. The high power approximation of

the full multiplexing case from (4) shows the rate pairs R′′

1

and R′′

2 as the solid black curve which perfectly matches the

dashed one if both rates are larger than approximately 14
bits per channel use. The deviation for smaller rates does not

matter because there, the border of the asymptotic rate region

is given by a stream allocation where only one user applies

full multiplexing, the other one has only one active stream. In



other words, the blue curve which corresponds to the stream

allocation [1/2] is weakly Pareto optimal as long as the rate

of user one is smaller than about 17 bits per channel use.

Conversely, if user two has only one active stream denoted by

[2/1], the red curve is weakly Pareto optimal if the rate of

user two is below about 15 bits per channel use. Otherwise,

full multiplexing all four data streams is optimum. Since both

users have the same number of antennas, the largest eigenvalue

of (14) is smaller than one and the angle ϕ from (15) is

smaller than 90 degrees if the two channels are not orthogonal,

although at the given zoom level, this does not seem to be the

case. The exact angle under which the red curve hits the axis

R2 = 0 is 82 degrees for the given channels, which is also the

angle under which the axis R1 = 0 is hit, since the eigenvalues

of (14) do not change when changing the index from 2 to 1
in (14) if M1 = M2.

The case in which the base station does not have enough

degrees of freedom to support the overall full multiplexing

configuration is shown in Fig. 2. There, only the two stream

configurations [1/2] and [2/1] contribute to the boundary of

the asymptotic rate region. Again, 10 log10 P = 40dB holds

but the base station is equipped with N = 3 antennas only,

so the last two rows of H1 and H2 have been removed. The

lack of the full multiplexing configuration leads to the dent in

the region boundary, and ϕ has decreased to 72 degrees.

VI. CONCLUSION

We have derived the boundary of the asymptotic rate region

under linear filtering in the MIMO broadcast channel. For

the stream configurations that contribute to the border of the

region, we have found the optimum transmission strategy in

terms of transmit covariance matrices and precoders. Besides

the case when the base station has enough degrees of freedom,

we investigated the scenario where not enough antennas are

available at the base station, which so far has never been

analyzed before.
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Fig. 1. Border of the rate region with N = 5 and M1 = M2 = 2 for
which the relevant three different stream allocations [1/2], [2/1], and [2/2]
contribute.
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Fig. 2. Border of the rate region with N = 3 and M1 = M2 = 2 for which
the relevant two different stream allocations [1/2] and [2/1] contribute.
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