
Fast Radio Wave Propagation Prediction by
Heterogeneous Parallel Architectures with

Incoherent Memory
Florian Schröder, Michael Reyer, Rudolf Mathar

Institute for Theoretical Information Technology
RWTH Aachen University
D-52074 Aachen, Germany

Email: {schroeder, reyer, mathar}@ti.rwth-aachen.de

Abstract—The present correspondence deals with radio wave
propagation for urban scenarios on the cell broadband engine.
Binary space partitioning trees are used to split the building
data into manageable size for the parallel units of the cell. By
choosing the size of the tree leafs both data transfer between
units and runtime of the algorithm is significantly improved.
The implementation of these techniques allowing for reflection
demonstrates promising results for speeding up radio wave
propagation.

I. INTRODUCTION

Fast radio wave propagation plays an essential role in
planning, analysis, and optimization of radio networks. A
huge variety of prediction scenarios have to be evaluated.
Consequently the predictions need to be fast. For the design
of fast algorithms it has to be taken into account that the per-
formance improvement of processors has shifted from higher
clock speed to more cores. The paradigms of programming
need to consider this hardware development resulting in many
heterogeneous cores for general purpose calculations, e.g.,
multi core CPU, high performance graphics hardware (GPU),
and so forth.

An overview of radio wave propagation models is given
in [1] and [2]. Models proposed in the literature can basically
be divided into (semi) empirical and ray optical models. Semi
empirical models calculate the received power on the basis of
frequency, distance, and an empirical part mainly describing
the obstacle influence. The strength of such approaches is the
speed of prediction. However, the prediction quality is low if
the influence of deflection effects like diffraction, reflection,
and transmission is high. This leads to ray optical approaches
which identify ray paths through the scene to combat the lack
of prediction quality at the cost of higher computation times.

In ray optical models the environment, e.g., buildings, is
usually described by polyhedrons, formed of surface sections,
called facets in the following. Several ray paths between
the transmitter and receiver point are searched, regarding
deflection effects as reflection on, transmission through, and
diffraction at edges of the given facets. Ray optical models
are classified as ray tracing and ray launching, depending on
the way the ray paths are determined.

In ray tracing models all possible ray paths starting from
a receiver point to the transmitter are searched. The set of
possible ray paths is limited by a maximum number of deflec-
tion points, i.e., points where deflection effects occur. For each
receiver point the possible ray paths have to be recalculated,
as there might be complete different ray paths. This leads
to multiple calculation of nearly identical ray path pieces,
particularly, if receiver points are nearby located. Therefore,
in [3] an extensive preprocessing is proposed which computes
visibility of facets in advance. Hereby faster predictions are
achieved.

Ray launching methods emit a finite set of rays from the
transmitter in predetermined directions, cf. [4] and [5]. If rays
hit a facet, possible deflection effects are performed. A receiver
point is hit if the ray path crosses its proximity. As the rays
disperse, important deflection points or even receiver points
may not be hit. Alternatively, in [6] 3D cones are used instead
of single rays. Beyond this work, mixed models have been
investigated which follow partly rays and partly use empirical
parameters, cf. [7]. Additional work on prediction algorithms,
which is based on ray optical approaches, can be found for
example in [8].

The high potential of parallel architectures is well known,
especially for graphics cards it is discussed in [9], [10]. Using
graphics cards for non graphical purposes is called GPGPU
(General Purpose computations on Graphics Processing Unit),
see [11]. There are numerous applications, e.g., physical
simulation in [9] and sorting in [10]. With the introduction
of the Playstation 3, for short PS3, in March 2007 the cell is
available for research at low cost. The high potential of this
architecture is described in [12].

Radio wave propagation has been applied on parallel ar-
chitectures. Recent results for graphics cards may be found
in [13], [14] and for the cell in [15].

The paper is organized as follows. We start with a descrip-
tion of radio wave propagation in Section II. After a brief
introduction to parallel architectures in Section III, important
principles of the implementation are presented in Section IV.
This includes binary space partitioning of the data and a smart
method of calculating intersections. In Section V results are

presented. Finally, we conclude this paper in Section VI.

II. RADIO WAVE PROPAGATION

In this paper we use CORLA (Cube Oriented Ray Launch-
ing Algorithm) from [16] for radio wave propagation. The
urban environment is described by a simple representation of
three dimensional objects, particularly, buildings as polygons
with one height, i.e., roof styles are neglected, see Figure 1.
The model for the field strength prediction considers 1. line-

Fig. 1. Example of building representation in Munich, [1]

of-sight, 2. reflection, 3. horizontal diffraction, and 4. vertical
diffraction as depicted in Figure 2. As building part of the

1.

2.

3.

4.

Y

Fig. 2. Overview of ray optical effects

path attenuation we use a modification of the well known free
space propagation formula. Using the overall distance d(p)
of the path p, neglecting the antenna gains – this may be
easily considered in a post processing –, adapting the path loss
exponent γ according to the environment, and introducing an
estimator zA mitigating imprecise information about transmit
powers leads to

L
dB

0 (p) = 20 lg(4π/λ) + zA + 10γ lg d(p) ,

where λ denotes the wavelength. The impact of the effects
is modeled by polynomial terms of a low degree with the

change of angle of each effect as input. This results in the
overall attenuation of a path p

L
dB(p) = L

dB

0 (p)

+
nR(p)�

i=1

L
dB

R
(αR,i(p)) (1)

+
nV (p)�

i=1

L
dB

V
(αV,i(p)) (2)

+
nH(p)�

i=1

k�

j=0

zH,jα
j

H,i
(p) , (3)

where nX(p) is the counter of the effect X ∈ {R, V, H}
and αX,i(p) are the changes of angle of the i-th occurrence of
the effect. Note, the functions L

dB

X
given in (1) and (2) have

the same structure as shown in (3). If multiple paths arrive at
the same receiver point r, we do not add the paths but take the
strongest path which is a reasonable approximation, see [8].

III. PARALLEL ARCHITECTURES

Parallel architectures are widely spread nowadays. For a
long time processing power was improved by increasing clock
speed. But due to limitations in cooling and power consump-
tion this is no longer applicable. Consequently, for further
improvements processors move towards multi core layouts.
Another trend is using specialized computational power for
general purpose task. The most popular example is the GPU.

Generally speaking, systems with heterogeneous processor
architectures and incoherent memory will be found more often
and gain in importance.

A. Heterogeneous Architectures
For heterogeneous architectures the task division is one of

the challenging tasks. The CPU, a homogeneous architecture,
is designed for all kinds of tasks, it is very flexible, and built
for fast calculation and branching, while most other processing
units are usually specialized for certain task. Regarding these
tasks they are way faster than the CPU itself but on the price of
being slow on other task or even incapable of executing them.
On a homogeneous system your main concern is to supply
each unit with the same work load, because the overall runtime
is given by the slowest – in terms of runtime – unit. However,
on heterogeneous systems it is also important to designate
tasks with respect to the specialties of the hardware.

B. Incoherent Memory
Many vendors make a great effort in offering systems with

coherent memory. In such systems the hardware assures that
all caches are at sync. Hence, if two units read a value from the
memory, store it in their local caches, and one unit changes its
value, without a coherency mechanism the second unit would
work with an outdated value with undefined consequences.
It is most likely that heterogeneous architectures have no
coherent memory such that the software needs to take over the
validity check of data from hardware. This has to be carefully
considered when designing the software.

C. Cell Broadband Engine Architecture
We use the the Cell Broadband Engine Architecture, for

short cell or CBEA. It is designed amongst others to speed
up memory processing and defying the memory wall, cf. [17],
while keeping power consumption at low level as described
in [18]. The cell processor is a chip with ten cores. These
are a dual-core 64-bit IBM PowerPC for organizing tasks
and running the operating system and eight additional cores
called Synergistic Processing Elements, short SPE. It is a
heterogeneous system on one chip with incoherent memory,
the main memory accessible by all cores and the 256kB local
memory of each SPE. This local memory is located between
the main memory and the processor caches. It is very fast but
of limited size compared to todays main memory. The SPEs
use their own instruction set architecture for memory transfer
and many optimized calculation operations. Its 128 registers
are 128-bit wide supporting vector instructions – applying
operations not on single data but on whole vectors in one
step (SIMD - single instruction multiple data).

Our choice fell on this new type of processor, because it
comprises the previous described attributes and has a high
computational power on a low cost level. In order to exploit
the processor potential the algorithms need to be parallelized
and data structures must be designed to handle multiple access
and keep their validity when handled by several processors.
Particularly, the memory handling is very challenging due to
the local SPE memories.

IV. DATA STRUCTURES AND ALGORITHMS

The data structure of a program has a great impact on its
performance. The importance of good data structure design
gets more pronounced as the gain on speed for processors
is much higher than for memory. This phenomenon, when
a processor is burning cycles waiting for data to arrive, is
called memory wall, see [17]. A careful designed data structure
will reduce this effect. Good data structures should fulfill
the following constraints: i) Partition the input data due to
hardware constraints, like transfer block sizes etc. ii) Put the
data in some order beneficial to the algorithms, e.g., data
needed at consecutive steps should be grouped. iii) Enable
fast access to subsets of data.

Applying those constraints on radio wave propagation for
urban scenarios on a cell leads to binary space partitioning
(BSP) trees with ropes. With BSP a set of data will be
repeatedly divided into two subsets and saved into a tree
structure. Each node of the tree represents a partitioning
and each leaf denotes a subset of the final partition. In the
following leaf is a synonym for subset. The leafs contain
a set of facets and therefore the leaf size represents the
number of facets within the leaf. Figure 3 shows a 2D
representation of a tree, where each rectangle denotes a leaf
and each line – excluding the outer frame lines – depicts the
nodes. For example the vertical line roughly in the middle,
splitting the image into two, is the root node followed by
two horizontal lines splitting these halves again and so forth.
Since the tree has no information about the neighborhood

Fig. 3. Graphical representation of a BSP tree

of leafs, an additional structure is set on top of the tree,
ropes. Ropes add to each leaf the information about their
neighbors such that quick navigation among leafs is possible
and constraint iii) is fulfilled. While constructing the BSP
tree, it is ensured that the leafs need approximative the same
size in memory. This size is set to a multiple of the optimal
memory block transfer size for the hardware bus system of
the PS3. It fits optimal into the limited local memory of the
SPEs and it allows static memory allocation which is much
more convenient then dynamic memory allocation on SPEs
– not using dynamic allocation reduces memory management
problems. Consequently constraint i) is fulfilled.

For explanation of constraint ii), the benefit to the algorithm,
we need to explain the algorithm first. One of the most
important parts of radio wave propagation is to determine
which ray intersects with which facet. With a BSP tree it is
very efficient to determine a subset (leaf) belonging to some
coordinate or point; the complexity is at maximum the depth of
the tree in binary decisions which is logarithmic for balanced
trees. BSP trees are by design close to balance, i.e., there is
very small variance of the leaf depth. For our purposes this
needs to be generalized to the determination of all subsets
lying on a path from transmitter to receiver. This can easily be
performed by using the ropes providing the beneficial ordering
of the data mentioned in constraint ii).

Hence, we have excluded a lot of subsets and all of its facets
while determining the intersections. A detailed description of
the algorithm to create such BSP trees can be found in [15].

For evaluation of the attenuation at receiver points paths to
those points need to be calculated. Therefore, a sufficiently
large amount of rays is launched from the transmitter into
all directions. For each ray it is calculated, if the ray hits a
i) receiver point, ii) a facet within the subset, or iii) the border
of the subset. So either the attenuation is calculated or a ray
optical effect has to be processed or the ray is followed in the
neighboring subset.

As the calculation of the intersection between rays and

facets is an often repeated core component of this algorithm,
its runtime should be minimized. Obviously the size of the
leafs in the data structure may be chosen to optimize the
number of candidates on which the intersection test is exe-
cuted. A second measure is to carefully chose the number of
processed rays. So the goal is to minimize the amount of rays
while providing a certain level of accuracy for the resulting
prediction. And thirdly, the number of calculations may be
reduced by exploiting redundancy. In our case it is most likely
that rays just differing in the vertical angle either all will hit
a facet or pass over it. Meaning, in a full 3D calculation
a bunch of rays will intersect the facet at same (similar) x
and y coordinates but differing in the z coordinate, where z
represents the height. By splitting up this 3D calculation
into two 2D calculation, as suggested in [19], much of the
redundancy is taken away. In Figure 4 the first phase is
depicted where vertical overlaying rays are put together. The

Fig. 4. First phase: determining intersections in xy-plane

green and blue half circles mark the position where a ray hits
or drops out of a building. The red squares mark edges in a
close cone around the ray, indicating candidates for horizontal
diffraction. In the second phase the vertical overlaying rays
are separated again to process the different effects. Figure 5
depicts the vertical diffraction in the second phase, where
the numbers of vertical diffractions a path undergoes on its
way to the receiving plane is given. So naturally a recursive

Y

0 1 0 2 3 2

Fig. 5. Second phase: vertical diffraction

process is defined in which nodes can be discarded whenever
all children are processed. The children are independent and
therefore allow for easy parallelization.

V. RESULTS

As we have seen in the last section, the leaf size of a BSP
tree has strong impact on the runtime and is therefore be

studied. Recall, the smaller the leaf size the fewer intersection
calculations between rays and facets have to be performed per
leaf, but at the cost of a higher complexity which is explained
in the following. With a lower number of facets per leaf the
number of leafs increases and therefore more ray transfers
between leafs have to be executed. Additionally, the leafs cover
a smaller area and consequently the probability that a facet
crosses a leaf border grows. In such cases these facets have to
be split up and stored in each leaf which increases the total
amount of stored facets. In summary, the lower the leaf size
the more memory is used, the more management in terms of
transfers is needed and the more redundant calculations due
to the doubling of cut facets have to be executed. Thus, it is
to be expected that runtime will decrease with a decreasing
leaf size, but that it will increase again for very low leaf sizes.
Furthermore, it is to be expected that the number of leafs times
the leaf size will not be constant – as it is in the optimal case
– but increase with decreasing leaf size due to the doubling
of facets.

The above observations can be clearly seen in Figure 6
comparing the solid red line representing the realized num-
ber of leafs and the dashed blue line displaying its lower
bound.The solid red line is well above the blue one because
on one hand the leaf size is a maximal and not an average
value and on the other hand the number of leafs needs to
be a natural number. The runtime is relative to the runtime
with leaf size 2500 in which the number of leafs size is
slightly greater than the number of SPEs; beyond this level
side effects distort the measurement. Most interestingly, for big

 0

 50

 100

 150

 200

 250

 300

 0 250 500 750 1000 1250 1500 1750 2000
 0

 10

 20

 30

 40

 50

 60

 70

 80

nu
m

be
r o

f l
ea

fs

ru
nt

im
e

(%
)

leaf size

leafs
runtime

lower bound

Fig. 6. Runtime and number of leafs over the leaf size

leaf sizes the relation to the runtime is approximative linear.
For small leaf sizes the runtime is not monotonous. This effect
is mainly motivated by the algorithm used for the BSP tree
generation. To find the optimal partition is hard as the amount
of facets within each subtree cannot be precisely determined
with the information of the current set of facets because of
the duplication of facets which cut a border line. Instead a
greedy algorithm is used which in principle works as follows.
Starting with all facets at the root the greedy algorithm divides
the current set of facets generating two new children for the
current node. This procedure is repeated until the desired leaf

size is reached. So a suboptimal solution with a relatively high
degree of variation in the leaf size is attained. It is a topic
for further research to optimize the generation of BSP trees
which might be worthwhile taking into consideration that the
BSP tree generation needs to be executed once for a given
set of building data, whereas the radio wave propagation will
be run quite often to get predictions for all base stations and
their configurations within this area. Note, that those curves
are strongly dependent on the evaluated scenario and therefore
do not provide optimal values.

Ray generation has also an impact on runtime. While
developing strategies for ray generation the trade off between
prediction coverage and accuracy as well as speed needs to be
considered. The prototype uses a uniform distribution of rays.

The receiver points are evaluated according to the path loss
model of Section II. In Figure 7 an image representation of

Fig. 7. Prediction with reflection in Munich, [1]

the result is shown. The receiver points are equally distributed
on that area, i.e., each pixel represents a receiver point.
Furthermore, only the reflection effect is activated.

The current implementation is comprised of a full 3D
approach of ray evaluation and of a uniform distribution
of rays. This results in a runtime of about 40 seconds for
the Munich scenario which sounds slow at a first glance.
However, the runtime per followed ray is comparable between
cell and CPU implementations. Taking into account that more
complex rays are followed on the cell, it is quite promising
and should be significantly faster, when replacing the full 3D
approach with the two times 2D version and introducing a
smart ray generation and duplication. Note that both features
are included in the CPU implementation already.

VI. CONCLUSION

In this work a promising basis for speeding up radio wave
propagation by parallel architectures is presented. The use of

binary space partitioning has shown two major advantages.
Firstly, it enables for providing small independent data sets
which can be processed in parallel. And secondly, the run-
time of the algorithm can be sped up significantly as this
partitioning also allows for a preselection of relevant data to
be processed. First results show that the application on the
cell broadband architecture will be significantly faster than a
classical CPU implementation. This goal will be achieved after
replacing the 3D ray launching approach by a two times 2D
approach and a smart ray generation and duplication.

ACKNOWLEDGMENTS

This research was partly supported by the UMIC excellence
cluster of RWTH Aachen University

REFERENCES

[1] E. Damosso, Ed., COST Action 231: Digital mobile radio towards future
generation systems, Final Report. Luxembourg: Office for Official
Publications of the European Communities, 1999.

[2] N. Geng and W. Wiesbeck, Planungsmethoden für die Mobilkommu-
nikation. Springer, 1998.

[3] G. Wölfle, R. Hoppe, and F. Landstorfer, “A fast and enhanced ray
optical propagation model for indoor and urban scenarios, based on
an intelligent preprocessing of the database,” in Proceedings PIMRC,
Osaka, Japan, 1999.

[4] G. Durgin, N. Patwari, and T. S. Rappaport, “An advanced 3D ray
launching method for wireless propagation prediction,” in Proceedings
IEEE VTC Spring, Phoenix, AZ, 1997, pp. 785 – 789.

[5] M. Schmeink and R. Mathar, “Preprocessed indirect 3D-ray launching
for urban microcell field strength prediction,” in Proceedings IEEE AP,
Davos, Switzerland, 2000.

[6] T. Frach, “Adaptives hierarchisches Ray Tracing Verfahren zur parallelen
Berechnung der Wellenausbreitung in Funknetzen,” Ph.D. dissertation,
RWTH Aachen University, 2003.

[7] J. Beyer, “Ausbreitungsmodelle und rechenzeiteffiziente Methoden für
die Feldstärkeprognose in städtischen Mikrozellen,” Ph.D. dissertation,
Universität-Gesamthochschule Siegen, 1997.

[8] R. Wahl, G. Wölfle, P. Wertz, P. Wildbolz, and F. Landstorfer, “Dominant
path prediction model for urban scenarios,” 14th IST Mobile and
Wireless Communications Summit, Dresden (Germany), 2005.

[9] M. Harris, GPU Gems. Addison-Wesley, 2004.
[10] P. Kipfer and R. Westermann, GPU Gems 2. Addison-Wesley, 2005.
[11] “GPGPU.” [Online]. Available: http://www.gpgpu.org
[12] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick,

“The potential of the cell processor for scientific computing,” in CF ’06:
Proceedings of the 3rd conference on Computing frontiers. New York,
NY, USA: ACM, 2006, pp. 9–20.

[13] M. Reyer, T. Rick, and R. Mathar, “Graphics hardware accelerated field
strength prediction for rural and urban environments,” in Proceedings:
European Conference on Antennas and Propagation (EuCAP), Edin-
burgh, Scotland, UK, November 2007, pp. 1–5.

[14] A. Schmitz, T. Rick, T. Karolski, L. Kobbelt, and T. Kuhlen, “Simulation
of radio wave propagation by beam tracing,” in Eurographics Symposium
on Parallel Graphics and Visualization, 2009.

[15] F. Schröder, “Konzepte zur effizienten Umsetzung von Algorithmen
für die IBM Cell-Architektur - Anwendung auf Verfahren der Feld-
stärkeprädiktion im Mobilfunk,” Master’s thesis, RWTH Aachen, 2008.

[16] R. Mathar, M. Reyer, and M. Schmeink, “A cube oriented ray launching
algorithm for 3D urban field strength prediction,” in Proc. IEEE Interna-
tional Conference on Communications ICC ’07, 2007, pp. 5034–5039.

[17] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications
of the obvious,” SIGARCH Comput. Archit. News, vol. 23, no. 1, pp.
20–24, 1995.

[18] H. Hofstee, “Power efficient processor architecture and the cell proces-
sor,” in Proc. HPCA-11 High-Performance Computer Architecture 11th
International Symposium on, 2005, pp. 258–262.

[19] J.-P. Rossi and Y. Gabillet, “A mixed ray launching/tracing method
for full 3-D UHF propagation modeling and comparison with wide-
band measurements,” Antennas and Propagation, IEEE Transactions on,
vol. 50, no. 4, pp. 517–523, Apr 2002.

