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Abstract

Many communication channels with discrete input have non-uniform ca-
pacity achieving probability mass functions (PMF). By parsing a stream of
independent and equiprobable bits according to a full prefix-free code, a modu-
lator can generate dyadic PMFs at the channel input. In this work, we show
that for discrete memoryless channels and for memoryless discrete noiseless
channels, searching for good dyadic input PMFs is equivalent to minimizing
the Kullback-Leibler distance between a dyadic PMF and a weighted version
of the capacity achieving PMF. We define a new algorithm called Geometric
Huffman Coding (GHC) and prove that GHC finds the optimal dyadic PMF in
O(m logm) steps where m is the number of input symbols of the considered
channel. Furthermore, we prove that by generating dyadic PMFs of blocks of
consecutive input symbols, GHC achieves capacity when the block length goes
to infinity.

I. INTRODUCTION

For many communication channels, the ultimate rate for reliable data transmission is
given by the maximum information per cost. For discrete memoryless channels (DMC)
and for additive noise channels with finite input alphabet, the ultimate rate is the maximum
mutual information between input and output per channel use. For memoryless discrete
noiseless channels (DNC), the ultimate rate is the maximum entropy of the input per
average weight. In both cases, the maximum is achieved by an input that is distributed
according to a capacity achieving probability mass function (PMF). To use non-uniform
input PMFs in a digital communication system, a modulator has to generate this PMF by
mapping independent equiprobable data bits to the channel input symbols. One way to
do this is to parse the data bits by a full prefix-free code and to map each codeword to
an input symbol [1, Sec. VII]. PMFs that can be generated in this way are dyadic, i.e.,
the probability of each point is of the form 2−`, ` ∈ N. The capacity achieving PMFs
are in general not dyadic, which raises two questions. First, what is an optimal dyadic
PMF that maximizes information per cost, and second, if we jointly generate blocks of
consecutive input symbols by a dyadic PMF, can we asymptotically achieve capacity by
letting the block length go to infinity.

For noiseless channels, an efficient algorithm to find the optimal dyadic PMF that
maximizes entropy per average weight was found in [2]. In general, a common approach
in the literature is to use the dyadic PMF that results from the optimal source code of
the capacity achieving PMF. Dyadic PMFs resulting from source codes are in general
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not optimal. For the (d, k) constrained noiseless channel, it was claimed in [3] that a
source code asymptotically achieves capacity. To the best of our knowledge, for DMCs,
there exist no results in the literature on optimality and asymptotic behavior of dyadic
PMFs. In [1], [4], the authors use source codes for additive noise channels. While good
numerical results are observed, optimality and asymptotic behavior are not assessed. In
[5], input entropy per average weight is maximized for additive noise channels. This is
in general not equivalent to the maximization of mutual information per channel use.

Denote the capacity achieving PMF of a channel by p∗. In this work, we show for
DMCs that minimizing the Kullback-Leibler distance (KL) D(p‖p∗) over all dyadic
PMFs p maximizes a lower bound on the achieved mutual information per channel use.
For DNCs, we show that searching for the optimal dyadic input PMF is equivalent
to minimizing the weighted KL-distance D(p‖p∗R) ,

∑
i pi log(pi/p

∗
i
R) over all dyadic

PMFs p. The value of R is given by the fraction of the channel capacity that is achievable
by dyadic PMFs. We introduce an algorithm called Geometric Huffman Coding (GHC)
and prove that GHC minimizes D(p‖x) over all dyadic PMFs p, for any given vector
x with non-negative entries. In particular, for x = p∗, GHC minimizes D(p‖p∗) and for
x = p∗R, GHC minimizes D(p‖p∗R). The complexity of GHC is O(m logm), where m
is the number of input symbols of the considered channel. Furthermore, we show that,
to asymptotically achieve capacity for DMCs and DNCs, the normalized KL-distance
D(p(k)‖p(k)∗)/k has to vanish for block length k →∞. This is achieved by GHC. Based
on the present work, we show in [6] that for finite signal constellations with average
power constraint, GHC achieves capacity. GHC is as handy as Huffman coding and an
implementation of GHC in MATLAB is readily available at our website [7].

The remainder of this work is organized as follows. In Section II, we define GHC. In
Section III, we show optimality and asymptotic optimality of GHC for DMCs. We show
optimality and asymptotic optimality of GHC for DNCs in Section IV.

II. GEOMETRIC HUFFMAN CODING

For a PMF p and a vector x with non-negative entries, the KL-distance is given by

D(p‖x) =
∑
i

pi log
pi
xi

. (1)

Note that D(p‖x) can be equal to infinity. The dyadic PMF p that minimizes the KL-
distance is directly given by the full prefix-free code that is constructed by the algorithm
of the following proposition. A prefix-free code is full if it fulfills the Kraft inequality
[8, Theorem 5.2.2] with equality.

Proposition 1. Without loss of generality, we assume x1 ≥ x2 ≥ · · · ≥ xm. The dyadic
PMF p that minimizes D(p‖x) is obtained by constructing a Huffman tree with the
updating rule

x′ =

{
xm−1, if xm−1 ≥ 4xm

2
√
xm−1xm, if xm−1 < 4xm.

(2)

Since it involves a geometric mean, we call this method Geometric Huffman Coding. We
write p = GHC(x).

Proof: The proof is given in the appendix.
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Fig. 1: For q = (0.328, 0.32, 0.22, 0.11, 0.022)T , the left figure displays the code tree of GHC. The figure
in the middle shows the code tree of Huffman coding. The right figure displays the code tree of
Huffman coding applied to (q1, . . . , q4)

T .

An implementation of GHC in MATLAB can be found at our website [7]. In comparison
to GHC, Huffman coding uses the updating rule x′ = xm + xm−1. Furthermore, it can be
shown that Huffman coding minimizes the KL-distance D(x‖p) over all dyadic PMFs
p. Note that this is not equivalent to minimizing (1) because the KL-distance is not
symmetric in its arguments. GHC has the same complexity as Huffman coding, which is
O(m logm) [9, Chap. 16.3].

For illustration purpose, we apply GHC and Huffman coding to the PMF

q = (0.328, 0.32, 0.22, 0.11, 0.022)T (3)

where (·)T denotes the transpose. The resulting code trees are displayed in Figure 1. By
reading off the codeword lengths, the corresponding dyadic PMFs are

pGHC = (2−1, 2−2, 2−3, 2−3, 0)T and pHC = (2−2, 2−2, 2−2, 2−3, 2−3)T (4)

and the KL-distances to q are

D(pGHC‖q) = 0.13619 and D(pHC‖q) = 0.19548 (5)

where we used the dual logarithm. As expected, the KL-distance resulting from GHC is
smaller than the one that results from Huffman coding. Since GHC assigns zero to q5,
one may want to manually assign probability zero to q5 and then apply Huffman coding
to (q1, . . . , q4)

T . The corresponding code tree is displayed in Figure 1. The corresponding
PMF and the resulting KL-distance to q are respectively

pHC′ = (2−2, 2−2, 2−2, 2−2, 0)T , D(pHC′‖q) = 0.15523. (6)

While pHC′ slightly improves upon pHC, the KL-distance is still larger than the one
resulting from GHC.

Let q now denote some arbitrary PMF. We consider k subsequent symbols that are
independent and identically distributed according to q. We denote the joint PMF of these
symbols by q(k). Our aim is to show that for p(k) = GHC(q(k)), the normalized KL-
distance D(p(k)‖q(k))/k vanishes for k →∞. To show this, we will need the following
lemma, which shows the existence of dyadic PMFs with a bounded KL-distance for any
PMF q.

Lemma 1. Without loss of generality, q1 ≥ q2 ≥ · · · ≥ qm. Assign then pi = 2−b− log2 qic

for i ≤ k, and pi = 0 for i > k, where k ≤ m is chosen1 such that
∑m

i=1 pi = 1. Then

1It can actually be shown that such k always exists, so GCC is well-defined.



p is a dyadic PMF and D(p‖q) ≤ log 2. We call this method Greedy Channel Coding
(GCC) and write p = GCC(q).

Proof:

D(p‖q) =
m∑
i=1

pi log
pi
qi
≤

m∑
i=1

pi log
2−b− log2 qic

qi
(7)

≤
m∑
i=1

pi log
2−(− log2 qi−1)

qi
(8)

=
m∑
i=1

pi log
2qi
qi

= log 2 (9)

where the inequality in (7) follows from the values that GCC assigns to the pi.
An implementation of GCC in MATLAB is available at [7]. It is now easy to show

the asymptotic behavior of GHC.

Proposition 2. For p(k) = GHC(q(k)) it holds that

D(p(k)‖q(k))

k

k→∞−→ 0. (10)

Proof: Define p̃(k) = GCC(q(k)). Then

D(p(k)‖q(k))

k
≤ D(p̃(k)‖q(k))

k
≤ log 2

k
(11)

where the first inequality follows via Proposition 1 from the optimality of GHC and where
the second inequality follows from Lemma 1. log 2/k goes to zero for k → ∞ and the
statement of the proposition follows.

III. DISCRETE MEMORYLESS CHANNEL

We now show how GHC can be used to find dyadic PMFs that well approximate the
capacity of DMCs. A DMC is specified by a set of m input symbols, a set of n output
symbols and a matrix of transition probabilities (hji). An input PMF p relates to its
corresponding output PMF r as

r =

 r1
...
rn

 =

 h11 · · · h1m
... . . . ...

hn1 · · · hnm

 p1
...
pm

 . (12)

The mutual information between input and output is given by [10, Eq. (8.73)]

I(p) =
∑
i

pi
∑
j

hji log
hji

rj
. (13)

The capacity of a DMC is the maximum mutual information between input and output,
where the maximum is taken over all input PMFs. To find the best dyadic input PMF,
we need to solve the optimization problem

maximize
p

I(p)

subject to p is a PMF

pi = 2−`i , `i ∈ N, i = 1, . . . ,m. (14)



This is a nonlinear optimization problem with integer constraints and therefore intractable
for practical purposes. In order to overcome this difficulty, we proceed as follows. First,
we will drop the restriction to dyadic PMFs and characterize the capacity achieving PMF
p∗. Then, we will derive the penalty that results from using a PMF p different from p∗.
Finally, we will minimize this penalty over all dyadic PMFs.

Capacity and capacity achieving PMF are respectively defined as

C = max
p
I(p), p∗ = argmax

p
I(p). (15)

Denote by r and r∗ the output PMFs that result from using the input PMFs p and
p∗, respectively. According to [11, Eq. (4.5.1)], the output PMF r∗ resulting from the
capacity achieving PMF p∗ has the important property that∑

j

hji log
hji

r∗j
= C, whenever p∗i > 0. (16)

We now use this property to express the mutual information I(p) achieved by some PMF
p in terms of capacity C and capacity achieving PMF p∗. The only assumption that we
make about p is that

pi = 0, whenever p∗i = 0. (17)

Under this assumption, we have for I(p)

I(p) =
∑
i

pi
∑
j

hji log
hji

rj
=
∑
i

pi
∑
j

hji log
hjir

∗
j

rjr∗j
(18)

=
∑
i

pi
∑
j

hji log
hji

r∗j
+
∑
i

pi
∑
j

hji log
r∗j
rj

(19)

= C−
∑
j

(∑
i

pihji

)
log

rj
r∗j

(20)

= C−
∑
j

rj log
rj
r∗j

(21)

= C−D(r‖r∗) (22)

where equality in (20) follows from (16) and (17). From the last line, we see that the
penalty of using p instead of p∗ is exactly the KL-distance between the corresponding
output PMFs r and r∗. To get a simple expression that directly depends on p and p∗,
we lower bound the last line. According to [8, Eq. (4.45)] the KL-distance between
the output PMFs is upper-bounded by the KL-distance between the input PMFs, i.e,
D(r‖r∗) ≤ D(p‖p∗). Thus,

I(p) ≥ C−D(p‖p∗). (23)

We conclude that for DMCs, the penalty that results from using p instead of p∗ is upper
bounded by D(p‖p∗). According to Proposition 1, we can now efficiently minimize the
penalty bound over all dyadic input PMFs p by using p = GHC(p∗). Note that GHC
guarantees (17): assume p∗ is ordered and p∗m = 0, p∗m−1 > 0. Then p∗m−1 > 4p∗m and
GHC assigns pm = 0.



We now jointly consider the PMF of k consecutive channel inputs. Denote by p(k)∗

the capacity achieving joint PMF. Since the channel is memoryless, p(k)∗ is the product
of k marginal PMFs p∗ and we have I(p(k)∗) = k I(p∗) = kC. Thus, for a joint PMF
p(k) we have

I(p(k)) ≥ kC−D(p(k)‖p(k)∗). (24)

The mutual information per channel use Ī(p(k)) , I(p(k))/k is thus given by

Ī(p(k)) ≥ C− D(p(k)‖p(k)∗)

k
. (25)

By using p(k) = GHC(p(k)∗), according to Proposition 2, Ī(p(k)) → C for k → ∞ and
we conclude that GHC is asymptotically capacity achieving.

IV. MEMORYLESS DISCRETE NOISELESS CHANNEL

Following [12], a memoryless DNC is given by a finite alphabet A = (a1, . . . , am)
of atomic symbols and an associated weight function w : A → R>0, ai 7→ wi > 0. The
information rate H̄ that is transmitted over the channel is given by the entropy of the
input PMF divided by the average weight, i.e.,

H̄(p) =
H(p)∑
i piwi

, with H(p) = −
∑
i

pi log pi. (26)

To find the dyadic PMF that maximizes H̄(p), we need to solve the optimization problem

maximize
p

H̄(p)

subject to p is a PMF

pi = 2−`i , `i ∈ N, i = 1, . . . ,m. (27)

As in the case of DMCs, this is an intractable nonlinear optimization problem with
integer constraints. We will therefore proceed in the same way as we did for the DMC
in Section III. We start by calculating the capacity and the capacity achieving PMF p∗.
This can be done by Lagrange Multipliers, see, e.g., [13]. Denote by b the base of the
logarithm log. The capacity is achieved by the input PMF

p∗i = b−Cwi , i = 1, . . . ,m (28)

where C denotes capacity and is given by the greatest positive real solution of the equation∑
i

b−swi = 1. (29)

From (28), we have the relation wi = − 1
C

log p∗i . We can thus write∑
i

piwi = − 1

C

∑
i

pi log p∗i . (30)

Denote by R the fraction of C that can be achieved by the best dyadic PMF p̃, i.e.,

p̃ , argmax
p dyadic

H̄(p), R ,
H̄(p̃)

C
. (31)



In general, R is not known beforehand, but we will show in Subsection IV-A how it can
be found. Suppose for now that we know R. Assume further that

pi = 0, whenever p∗i = 0. (32)

Furthermore, we use the convention 0 log 0 = 0. With these assumptions, we can now
write H̄(p) as

H̄(p) =
−R
∑

i pi log p∗i + R
∑

i pi log p∗i +H(p)∑
i

piwi

(33)

= RC−
∑

i pi log pi − R
∑

i pi log p∗i∑
i

piwi

(34)

= RC−

∑
i pi log pi

p∗i
R∑

i

piwi

= RC− D(p‖p∗R)∑
i piwi

(35)

where in (34), we used (30) and the definition of entropy. By (31), for the best dyadic PMF
p̃ we have H̄(p̃) = RC. It follows that for any dyadic PMF p, we have D(p‖p∗R) ≥ 0
and for the best dyadic PMF p̃, we have D(p̃‖p∗R) = 0. We conclude that for DNCs,
the best dyadic PMF is found by minimizing D(p‖p∗R) over all dyadic PMFs p and
by Proposition 1, this PMF is given by p = GHC(p∗R). Recall that, as we argued in
Section III, GHC guarantees (32).

We now consider the PMF of k consecutive symbols. We denote the corresponding
weights by w(k). The capacity achieving joint PMF is the product of k copies of p∗

and we denote it by p(k)∗. Clearly, w
(k)
i ≥ kwmin for i = 1, . . . ,mk where wmin =

min{w1, . . . , wm}. Using this, we get for H̄(p(k)) the lower bound

H̄(p(k)) =
H(p(k))∑
i p

(k)
i w

(k)
i

=
H(p(k)) +

∑
i p

(k)
i log p

(k)∗
i −

∑
i p

(k)
i log p

(k)∗
i

− 1
C

∑
i p

(k)
i log p

(k)∗
i

(36)

= C− D(p(k)‖p(k)∗)∑
i p

(k)
i w

(k)
i

(37)

≥ C− w−1min

D(p(k)‖p(k)∗)

k
. (38)

For p(k) = GHC(p(k)∗), according to Proposition 2, the last term in the last line vanishes
for k →∞ and we have H̄(p(k))→ C, thus GHC is asymptotically capacity achieving.

A. Finding R

The exact value of R is in general not known beforehand. However, R and the best
dyadic PMF can be found iteratively by the Lempel-Even-Cohn (LEC) algorithm [2].
The idea of the algorithm is to start with some R, then find the best dyadic PMF for
this R, and then update the value of R. The best PMF for a given R is in the original
formulation of the LEC algorithm found as follows. A subset of ` nonzero entries of p is
chosen. A Huffman-like procedure of complexity O(m logm) then finds the best dyadic
PMF with ` nonzero entries. There are m− 1 values for ` that have to be evaluated, the
complexity of the overall procedure is thus roughly O(m2 logm).



Algorithm 1 Finding R and the optimal dyadic PMF for DNCs
1: procedure LEC(p∗)
2: R← 1
3: while D(p‖p∗R) 6= 0 do
4: p← GHC(p∗R)
5: R← H̄(p)/C
6: end while
7: end procedure

From (35) and a careful study of the original formulation in [2, Sec. III,V], it can
be shown that the iteration step is equivalent to minimizing the weighted KL-distance
D(p‖p∗R). This can be done with complexity O(m logm) by GHC. A formulation of
the complete LEC algorithm with GHC as the iteration step is provided in Algorithm 1.
Besides improving the complexity of the iteration step from O(m2 logm) to O(m logm),
our formulation answers a question that was raised in [14], namely how the LEC algorithm
could be used to find the dyadic PMF that minimizes the KL-distance D(p‖p∗). The
simple answer is to perform the iteration step once with R = 1. An implementation in
MATLAB of our formulation of the LEC algorithm can be found at [7].

APPENDIX

Denote by x some non-negative vector with m entries. Assume x is ordered, i.e.,
x1 ≥ x2 ≥ · · · ≥ xm. We now show that GHC minimizes D(p‖x) over all dyadic PMFs
p. The PMF p is dyadic if and only if there exist numbers `i ∈ N, i = 1, . . . ,m, such
that pi = 2−`i ,∀i and

∑
i 2−`i = 1. This is equivalent to `1, . . . , `m being the codeword

lengths of a full prefix-free code [10, Sec. 2.3.2]. Using this, we can write

D(p‖x) =
∑
i

pi log
pi
xi

= log(2)
∑
i

pi log2

pi
xi

(39)

= log(2)
∑
i

2−`i(− log2 xi − `i). (40)

We define u by ui = − log2 xi,∀i. Omitting the constant factor log 2, our aim is thus to
minimize ∑

i

2−`i(ui − `i) (41)

subject to `1, . . . , `m are the codeword lengths of a full prefix-free code. Based on (41),
we now prove the optimality of GHC in a way similar to the proof given in [10, Sec.
2.5.3] for the optimality of Huffman coding.

Assume for now that an optimal algorithm assigns finite values to the codeword lengths
`m and `m−1 of the two least likely symbols, which correspond to the greatest entries um

and um−1 of u. We now show that in this case, there is an optimal algorithm for which
`m = `m−1.

Lemma 2. For an optimal algorithm, ui > uj implies `i ≥ `j .



Proof: Assume the contrary, i.e., ui > uj and `i < `j . Consider the term

2−`i(ui − `i) + 2−`j(uj − `j). (42)

By interchanging `i and `j , the term decreases:

[2−`j(ui − `j) + 2−`i(uj − `i)]− [2−`i(ui − `i) + 2−`j(uj − `j)] (43)

= 2−`j(ui − uj) + 2−`i(uj − ui) (44)

= (2−`i − 2−`j︸ ︷︷ ︸
>0

)(uj − ui︸ ︷︷ ︸
<0

) < 0 (45)

so any code with ui > uj and `i < `j is not optimal.

Lemma 3. There is an optimal algorithm for which the codewords of the two greatest
entries um and um−1 are siblings, i.e., `m = `m−1, and in addition, no other codeword
is longer than `m and `m−1.

Proof: In a full prefix-free code, the sibling of the longest codeword is also a longest
codeword. According to Lemma 2, if um > um−1 > um−2 ≥ · · · , an optimal algorithm
assigns the two longest codewords to um and um−1. If only um ≥ um−1 ≥ um−2 ≥ · · · ,
assigning the two longest codewords to um and um−1 does not change optimality.

We can now use `m = `m−1 to rewrite (41):
m∑
i=1

2−`i(ui − `i) =
m−2∑
i=1

2−`i(ui − `i) + 2−`m−1(um−1 − `m−1) + 2−`m(um − `m) (46)

=
m−2∑
i=1

2−`i(ui − `i) + 2−`m(um−1 + um − 2`m) (47)

=
m−2∑
i=1

2−`i(ui − `i) + 2−(`m−1)
[(um−1 + um

2
− 1︸ ︷︷ ︸

,u′

)
− (`m − 1︸ ︷︷ ︸

,`′

)
]

(48)

=
m−2∑
i=1

2−`i(ui − `i) + 2−`
′
(u′ − `′). (49)

Thus, by combining um and um−1 through

u′ =
um−1 + um

2
− 1 (50)

the size m problem is reduced to a size m− 1 problem.
The optimal algorithm may assign probability zero to the greatest entry um, which

corresponds to `m =∞. We thus have
m∑
i=1

2−`i(ui − `i) =
m−1∑
i=1

2−`i(ui − `i) + 2−∞(ui −∞) =
m−1∑
i=1

2−`i(ui − `i) (51)

where we used the convention −0 log 0 = 0 and equivalently 2−∞∞ = 0. Thus, if
`m =∞, the size m problem reduces to a size m− 1 problem.

It remains to check if it is better to assign probability zero to um or to combine um

and um−1. First, assume the algorithm combines um and um−1. Then the contribution



to the sum (41) is 2−`
′
(u′ − `′). We can now assign probability zero to um and use the

codeword of u′ for um−1. The contribution of um to (41) is then zero and the contribution
of um−1 is 2−`

′
(um−1− `′). Thus, since our aim is to minimize (41), doing the former is

better if and only if

2−`
′
(um−1 − `′) > 2−`

′
(u′ − `′) (52)

⇔ (um−1 − `′) >
(um−1 + um

2
− 1
)
− `′ (53)

⇔ um−1 >
um−1 + um

2
− 1 (54)

⇔ um−1 > um − 2. (55)

Recalling xi = 2−ui , the updating rule (50) and the condition (55) can be expressed
in terms of x as

x′ =

{
xm−1, if xm−1 ≥ 4xm

2
√
xm−1xm, if xm−1 < 4xm.

(56)
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