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Abstract—In practical large scale relay networks, it is often
an unfeasible task to adapt the strategy of the relays to each
source/sink pair communicating through the network. In this
paper we consider the strategy of the relays as fixed and chosen
in advance. In this context, it is a crucial problem for the source
node transmitting information, to know the strategy of the relays
in the network. Therefore we optimize the transmit strategy of the
source node, assuming only partial relay information knowledge,
i.e., channel state information and relay strategies. We also study
the impact of getting complete relay information from certain
relays only, derive the reduction in the problem uncertainty due
to this knowledge and evaluate numerically the performance of
the network.

I. INTRODUCTION

Relay networks are models for communication systems
where one or more sources transmit information to one or
more sinks through relays. In order to reduce the complexity
of relays, a lot of attention has been paid to amplify-and-
forward (AF) relay networks (e.g., [1]–[5]). Less work has
focused on the case where the channel state information (CSI)
is unknown or incomplete at the source/relays/sink nodes. In
[6], the authors developed power allocation strategies for a
three-terminal AF relay network requiring only the knowledge
of the mean of the channel gains. In [7], the authors derive
the optimal relay precoders for a parallel relay network with
K relays and partial CSI at relays and sink. In [8], the
authors consider a 2-hop network and develop an opportunistic
relaying strategy using distributed space-time codes requiring
only statistical CSI at the relays.

The present paper differs from these previous works by
two main aspects. First the present work considers general
networks with no specific number of hops or topology. The
only mathematical restriction is that our networks must be
representable by a directed graph, which is not a limitation
from the practical point of view. The second, more important
difference, is that we consider the strategies of the relays to
be fixed, chosen in advance and that the source node shall
optimize its strategy given this fixed relaying choice. It is
indeed very costly and unpractical to adapt the strategy of the
relays in a network for each source/sink communication using
the network. A simple method for a network owner would
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be to set the amplification factors of the different relays to a
random value or a predefined value.

In this context, it is crucial for the source node to know
the relay strategies. This knowledge is however expensive
to gather since all relays participating in a communication
should first transmit their strategy to the source node. To save
energy and bandwidth it can be advantageous to assume only
partial knowledge of relay strategy and CSI at the source node
and develop a worst-case transmit strategy. Note that if the
source/sink pairs are fixed it could have been an option to
gather once the relay strategies at all sources. In a real network
however, the source/sink pairs change constantly, using each
time different sets of relays, which renders this simple ap-
proach infeasible. To tackle this problem we first define relay
information (RI) as CSI and relaying strategy, in other words
the RI of a relay consists in its amplification factors (i.e. its
strategy) and its CSI as a receiver (CSIR). The strategy of the
source node strongly depends on its RI knowledge.

The contribution of this paper is manifolds. We present a
framework, based on our recent work [9], enabling to study
the impact of partial RI at the source node while assuming
complete RI at the sink. We develop a worst-case optimization
solution for the source precoder in order to cope with missing
RI. We explain how gained RI from specific relays decreases
the problem uncertainty and evaluate the performance of the
network with different amount of RI.

The rest of the present paper is organized as follow. In
Section II, we describe our network model, in Section III we
present the optimization problem, in Section IV we propose a
solution to this problem, in Section V we study the influence
of gained RI on the overall problem uncertainty, in Section VI
we show numerical results validating our approach and finally,
Section VII concludes this work.

II. RELAY NETWORK MODEL

We consider networks that can be represented by a directed
graph G = (V, E) with a vertex set V and an edge set E with
|E| = e. The network has one source node, one sink node and
arbitrarily many relays. The source node transmits a vector
x ∈ Cn to the sink node which decodes a vector x̂ ∈ Cn.
We assume that x is zero-mean, normalized and uncorrelated
such that x ∼ NC(0, In). For simplicity we assume that the
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source has n outgoing edges, the sink has n incoming edges,
the min-cut of the network is at least n and the source has no
direct connection to the sink. The relays can linearly combine
incoming signals and forward them to the next relays or sink.
We illustrate an example network in Figure 1.

Fig. 1. Amplify and forward relay network.

We call a connection, a chain of edges, × nodes and +
nodes between the source or a relay and a relay or the sink.
As explained in more detail in our work [9], a × node models
the channel gain of a connection and a + node the Gaussian
noise entering a connection. The vector h contains the channel
gains in the network (a + node has always a channel gain of
1) and η ∈ CN is the noise vector applied to the N noisy
connections of the network such that η ∼ NC(0,Cη).

We numerate edges in the network from 1 to e and define
(similar to [10], [9]) the matrix A ∈ Ce×(n+N) which contains
1) the linear coefficients chosen by the source node to send
information through the network and 2) a coefficient of value
1 where noise enters a + node. Since we can always numerate
the edges outgoing from the source first, the matrix A can be
represented as a block matrix with the following structure

A =

ï
Ax 0
0 Aη

ò
, (1)

where Ax ∈ Cn×n is a precoding matrix applied by the
source to the transmitted signal, Aη ∈ C(e−n)×N is a matrix
composed of zeros and ones which distributes the noise on
the edges of the network. Further we define F ∈ Ce×e
which contains 1) the amplification factors f̃ij ∈ C chosen
by the relays to forward signals 2) the channel coefficients
represented by × nodes and 3) a coefficient of value 1 for +
nodes. The matrix F has the form

fij =


f̃ij ∃ direct flow from edge j to i through a relay
hi ∃ direct flow from edge j to i through a× node
1 ∃ direct flow from edge j to i through a + node
0 otherwise.

(2)
Finally we define B ∈ Ce×n which represents the coefficients
chosen by the sink to filter information out of the network.

Since we can always numerate the edges incoming at the sink
last, the matrix B can be represented as a block matrix with
the following structure

B =

ï
0

Bx

ò
, (3)

where Bx ∈ Cn×n is a filter applied to the received signal
to get x̂. Note that F represents the amplification of the signal
after one hop. Therefore Fk represents the amplification of the
signal after k hops. Interestingly F is strictly lower diagonal
and is therefore a nilpotent matrix, so there exists a power
q such that Fq = 0. It is possible to represent the effective
amplification of the signal at each edge of the network, with
only one lower diagonal matrix M of size e× e,

M = Ie + F + F2 + · · ·+ Fq−1 = (Ie − F)−1. (4)

We have shown in [9] that

x̂ = BHMA

ï
x
η

ò
= BH(Ie − F)−1A

ï
x
η

ò
. (5)

Given that we can always numerate the outgoing edges of the
source first, the incoming edges at the sink last and that there
is no direct connection between the source and the sink, F
can be written as

F =

0n×n 0n×m 0n×n
H L 0m×n

0n×n N 0n×n

 , (6)

with m = e−2n, H ∈ Cm×n contains the channel coefficients
of connections between the source and relays, N ∈ Cn×m
contains ones for noise components entering connections
between relays and the sink and L ∈ Cm×m a strictly lower
triangular matrix containing all other coefficients of F as
described in (2). It is simple to calculate, for n > 1 (this
hypothesis simply enables to write more compactly the term
in the middle of the matrix and does not influence the rest of
the paper), that M is equal to

M =

 In 0n×m 0n×n
(Im − L)−1H (Im − L)−1 0m×n

N(Im − L)−1H N(Im − L)−1 In

 . (7)

By putting (1), (3) and (7) together into (5) we can express x̂ as

x̂ = Bx
H(MxAxx + MηAηη), (8)

where we have defined Mx , N(Im − L)−1H and
Mη , [N(Im − L)−1 In]. Note that this network model
is very general and enables to represent different kind of
multiplexing, in particular it is possible to model a multihop
multiple-input multiple-output (MIMO) relay network.

III. WORST-CASE OPTIMIZATION PROBLEM
FORMULATION

As mentioned previously, we want to consider the strategy
of the relays to be the same for any source/sink pair and
therefore we assume that F is fixed and cannot be optimized.
This assumption clearly raises the question, how does the

259



network perform when the source node has only partial
knowledge of the channel gains and more important of the
relaying strategy. To answer this question we optimize the
matrix Ax to maximize the mutual information between the
source and the sink given partial RI. The matrix Bx is taken
to be the minimum mean-square error (MMSE) filter.

We model uncertainty on the relay strategies and on the
channel gains, i.e., the uncertainty on F, as H = Ĥ + ∆H

with ‖∆H‖F ≤ εH where Ĥ is a known matrix,
∆H is an uncertainty component with limited norm and
‖∆H‖F =

»
Tr(∆H∆H

H) is the Frobenius norm of ∆H.
Similar we have L = L̂ + ∆L with ‖∆L‖F ≤ εL. Since N
is only composed of zeros and ones, depending only on the
physical structure of the network, we consider N as certain.

We would like to express the uncertainty on Mx and Mη

caused by the uncertainty on F. We have

Mx = N(Im − L)−1H

= N(Im − L̂−∆L)−1(Ĥ + ∆H).
(9)

Lemma 1. (Woodbury Identity) Let X,Y ∈ Cn×n. Assume
X and X + Y are invertible, it holds

(X + Y)−1 = X−1 −X−1Y(In + X−1Y)−1X−1.

Using Lemma 1 and defining L̂′ , (Im − L̂)−1, we can
write (9) as

Mx = N(L̂′ + L̂′∆L(Im − L̂′∆L)−1L̂′)(Ĥ + ∆H).
(10)

Now we can write

Mx = M̂x + ∆Mx (11)

with
M̂x , NL̂′Ĥ = N(Im − L̂)−1Ĥ (12)

and ∆Mx an uncertainty matrix for which we need to bound
the norm. For a given matrix X, we define λi(X) and σi(X)
as the i-th eigenvalue and respectively the i-th singular value
of X. σmax(X) = σ1(X) is the largest singular value of X.

Lemma 2. Let X ∈ Cn×n. Assume that X is singular and
In + X is invertible, it holds

‖(In + X)−1‖F ≤
√
n.

Proof:

‖(In + X)−1‖F =
√∑n

i=1 σi((In + X)−1)2

=
√∑n

i=1 σi(In + X)−2

=
√∑n

i=1 λi((In + X)H(In + X))−1

≤
√∑n

i=1(1 + 2λn(X) + λi(XHX))−1

(a)
=

√∑n
i=1(1 + σi(X))−1

≤
√∑n

i=1(1 + σn(X))−1

(b)
=
√
n,

where (a) and (b) comes from the fact that X is singular, i.e.,
λn(X) = 0 and σn(X) = 0.

Using Lemma 2, we can bound the norm of ∆Mx as

‖∆Mx‖F≤σmax(NL̂′)(εH+
√
mεL(σmax(L̂′Ĥ)+σmax(L̂′)εH))

‖∆Mx‖ ≤, εx.
(13)

Similarly we can write

Mη = M̂η + ∆Mη (14)

with
M̂η = [N(Im − L̂)−1 In] (15)

and ∆Mη an uncertainty matrix with

‖∆Mη‖F ≤ σmax(NL̂′)σmax(L̂′)
√
mεL , εη. (16)

We would like to maximize the mutual information between
the transmitted signal and the received signal I(x, x̂). We
define the matrix E as the mean square error (MSE) matrix
defined as E = E[(x̂−x)(x̂−x)H]. As shown in [9], I(x, x̂)
can be written as follow
I(x, x̂) = −log det(E)

I(x, x̂) = log det(In + Ax
HMx

H(MηNηMη
H)−1MxAx)

(17)
with Nη , AηCηAη

H. Now we define R as

R = Mx
H(MηNηMη

H)−1Mx (18)

and the optimization problem we want to solve is

maximize
Ax

infimum
∆Mx ,∆Mη

(log det(In + Ax
HRAx))

subject to Tr(AxAx
H) ≤ PT ,

(19)

where PT is the available power at the source node. Note that
although we only express a power constraint for the source, the
relays are obviously also power constrained. Simply the source
node is not concerned with the power constraint of relays.

IV. WORST-CASE SOLUTION

Similar to [11, pp. 228–229], we need to find a matrix
R̆ such that for all (∆Mx ,∆Mη ) with ‖∆Mx‖F ≤ εx
and ‖∆Mη‖F ≤ εη we have R̆ 4 R. If we find such a
matrix, we have log det(In + Ax

HR̆Ax) ≤ log det(In +
Ax

HRAx),∀(∆Mx ,∆Mη ) .

A. Worst-Case Mη for an arbitrary Mx

We first define Rη = MηNηMη
H and decompose it

as Rη = R̂η + ∆Rη with R̂η = M̂ηNηM̂H
η and

∆Rη = M̂ηNη∆H
Mη

+ ∆MηNηM̂H
η + ∆MηNη∆H

Mη
.

We now bound ∆Rη . We find

‖∆Rη‖F ≤ 2‖M̂ηNη∆H
Mη
‖F + ‖∆MηNη∆H

Mη
‖F

≤ 2σmax(M̂ηNη)εη + σmax(Nη)ε2η , ε′η.

Since the matrix ∆Rη is Hermitian it follows that∑
i |λi(∆Rη )| ≤ ε′η . Using the dual Weyl inequality we

find that λi(Rη) ≤ λi(R̂η) + ε′η which can be expressed as
Rη 4 UR̂η

(ΛR̂η
+ ε′ηIn)UH

R̂η
, ÙRη by writing the eigen-

value decomposition of R̂η as R̂η , UR̂η
ΛR̂η

UH
R̂η

, where
UR̂η

is an orthonormal matrix and ΛR̂η
a diagonal matrix

with the eigenvalues of R̂η on the diagonal. Finally we have
that R−1

η < ÙR−1
η and thus Mx

HRη
−1Mx < Mx

HÙR−1
η Mx.
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B. Worst-Case Mx for an arbitrary Mη

Similarly we decompose the matrix R as R = R̂ + ∆R

with R̂ = M̂H
xR−1

η M̂x and ∆R = M̂H
xR−1

η ∆Mx +

∆H
Mx

R−1
η M̂x + ∆H

Mx
R−1

η ∆Mx and bound ∆R as follow

‖∆R‖ ≤ 2σmax(M̂xR−1
η )εx + σmax(R−1

η )ε2x , ε′x.

It follows that
∑
i |λi(∆R)| ≤ ε′x. Since R is posi-

tive semidefinite we have λi(R) ≥ (λi(R̂) − ε′x)+ which
can be written as R < UR̂(ΛR̂ − ε′xIn)+UH

R̂
by defining

R̂ , UR̂ΛR̂UH
R̂

.

C. Joint Worst-Case Optimization

We now combine the two previous results. We use ÙRη in-
stead of Rη and decompose R̂ = M̂H

x
ÙR−1

η M̂x = ÙUR̂
ÛΛR̂
ÙUH

R̂
.

We find a lower bound for R as

R < ÙUR̂(ÛΛR̂ − ε
′′

xIn)+ÙUH
R̂

= R̆

where

ε
′′

x , 2σmax(M̂x
ÙR−1

η )εx + σmax(ÙR−1
η )ε2x.

It remains to solve the problem (19) with R̆ ,i.e.,

maximize
Ax

log det(In + Ax
HR̆Ax)

subject to Tr(AxAx
H) ≤ PT ,

(20)

As shown in [12] the optimal precoding matrix Ax
∗ for this

problem has the form

Ax
∗ = VR̆ diag(

√
p), (21)

where VR̆ ∈ Cn×n is the right singular matrix of R̆ and p is
a power allocation vector calculated using waterfilling as

pi = (µ− λ−1

R̆,i
)+, 1 ≤ i ≤ n, (22)

where λR̆,i are the eigenvalues of R̆ and µ is the water level
chosen such that

∑n
i=1 pi = PT .

V. RELAY AND CHANNEL INFORMATION

We now look what happens when the source node receives
information from relays. We assume that the RI of a relay
contains its own strategy and the channel coefficients of its
incoming connections. We can write the matrix F as

F = R1 + R2 + · · ·+ RK , (23)

where K − 1 is the number of relays in the network,
Rk ∈ Ce×e, for k = 1, . . . ,K−1, is a matrix containing the
relay information of the relay k and RK contains the channel
coefficients of connexions going from relays to the sink. We
can write each Rk as a block matrix similar to (6),i.e.,

Rk =

0n×n 0n×m 0n×n
RHk RLk 0m×n
0n×n 0n×m 0n×n

 , (24)

and it follows that

H =
K∑
k=1

RHk, L =
K∑
k=1

RLk, (25)

with RHk ∈ Cm×n and RLk ∈ Cm×m for k = 1, . . . ,K.
The questions we want to answer are: what is the influence of
having relay information at the source node on performance
and how much relay information is necessary. To answer these
questions we formulate the loss in uncertainty provided by
the knowledge of relay information. We assume, to simplify
notations and without loss of generality, that the K ′ first relays
transmit their relay information to the source node. Further
we define TH as the set of nonzero coefficients of the matrix∑K′

k=1 RHk and TH as the complement of TH . We then can
write

Ĥ = Ĥ(TH) + Ĥ(TH), (26)

and
∆H = ∆H(TH) + ∆H(TH), (27)

where, e.g, Ĥ(TH) is a restriction of Ĥ with zero coefficients
outside of TH . Clearly we have

K′∑
k=1

RHk = Ĥ(TH) + ∆H(TH), (28)

which describes the fact that the relay information has a part
which is known already and an unknown part which decreases
the problem uncertainty. By plugging (28) into (27) and using
the fact that TH and TH are disjoints, we can show that

‖∆H(TH)‖F ≤

Ã
ε2H −

∥∥∥∥∥ K
′∑

k=1

RHk − Ĥ(TH)

∥∥∥∥∥
2

F

, ε′H , (29)

where ∆H(TH) is a matrix representing the rest uncertainty
about H. The known part of H is now

∑K′

k=1 RHk + Ĥ(TH).
Similarly it can be shown that

‖∆L(TL)‖F ≤

Ã
ε2L −

∥∥∥∥∥ K
′∑

k=1

RLk − L̂(TL)

∥∥∥∥∥
2

F

, ε′L. (30)

To see the influence of relay information on the uncertainty
of Mx and Mη it remains to replace Ĥ by

∑K′

k=1 RHk +

Ĥ(TH), L̂ by
∑K′

k=1 RLk + L̂(TL), εH by ε̂′H , and εL by ε̂′L
in (13) an (16). This gives us new values for εx and εη , which
are smaller than the former ones.

VI. NUMERICAL RESULTS

We simulate the network in Figure 1. The coefficients of
the matrix F are generated at random ∼ NC(0, 1) to represent
the fact that the strategy of the relays is fixed. The matrix
Ĥ, L̂, ∆H and ∆L are also chosen at random such that
‖∆H‖F ≤ γ‖Ĥ‖F and ‖∆L‖F ≤ γ‖L̂‖F, where we
call γ the effective uncertainty. The source node assumes
εH = 0.5‖Ĥ‖F and εL = 0.5‖L̂‖F, where 0.5 is the expected
uncertainty. In Figure 2 we plot the achieved mutual informa-
tion for the case where 1) the source node has complete relay
information (RI), 2) the source node has no RI and optimize
Ax based upon Ĥ and L̂ (we call it the nominal case), 3) the
source node has no RI and performs a worst-case optimization
as described in Section IV, 4) the source node knows the RI of
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Fig. 3. Mutual information for different available RI (SNR = 10 dB)

one single relay and 5) the source node knows the RI of both
relays and perform a worst-case optimization as described in
Section IV. In all cases we choose γ = 0.5. As expected, the
complete RI case is always best, the nominal case is the worst
and each RI information gathered at the source node improves
the mutual information. In Figure 3, we plot again the achieved
mutual information but this time with respect to γ/0.5, for a
SNR of 10 dB. In other words we want to observe the behavior
of the network when the effective uncertainty is lower or
higher than the expected uncertainty. The mutual information
stays constant for the case of complete RI since there is no
uncertainty. For a low uncertainty (< 0.6) the nominal case
is better than the worst-cases (with or without RI) since the
worst-case optimization overestimates the risk and designs Ax

for an unrealistic network. For a higher uncertainty (> 0.6),
the worst-case design starts becoming interesting if one has
RI available and from 0.8 on, the worst-case design is always
better. Finally, we plot in Figure 4 the frequency of occurence
of the ratio from the achieved mutual information to the mutual
information with complete RI. We want to see how often the
performance is far from the maximum. We see that the case
that the performance is less than 60% of the maximum occurs
much more often in the nominal case. A performance between
60% and 90% from the maximum occurs more often using a
worst-case optimization and the maximum mutual information
occurs as often for all cases.
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VII. CONCLUSION

In this work, we have presented a new model for studying
the influence of relay information on large-scale multihop net-
works when the strategy of the relays is fixed. We have derived
a solution to the worst-case optimization problem consisting
in maximizing the mutual information with partial knowledge
of relay information at the source. A future research direction
is to develop algorithms to choose which relay should send
RI to the source given a power budget.
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