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Abstract— In this paper, we consider a class of models that
describe parallel observations of a single source by many noisy
sensors, lossy quantization at each sensor, and finally information
fusion of the quantized data. Certain phenomena in biophysics
and neural information processing, but also in detection net-
works and modern communications can be elucidated by these
models. Mutual information is used as an analytical measure of
information exchange. We characterize the optimum information
fusion rule by maximum entropy of the corresponding output
distribution. For discrete input distributions, this problem can
be reduced to a generalized Knapsack problem, which is hard
to solve in general. We suggest a heuristic that minimizes the
decrease of entropy in each step, and show that for binary
information fusion the true optimum is attained for dyadic
distributions. The problem of finding optimum quantization
rules is an essential part of the model and treated analogously.
For input distributions with a density, optimality is achieved
by determining appropriate quantization thresholds. Finally, by
applying the data processing inequality, an upper bound for the
mutual information of arbitrary stochastic pooling channels is
found. This bound provides interesting insight into the resilience
of parallel noisy information processing in biological systems.

I. INTRODUCTION AND MOTIVATION

Present wireline and wireless communication systems
are highly optimized. Transceivers, coding and multiaccess
schemes are designed to achieve reliable communication at
highest possible rates. By defining the concept of capacity,
Shannon has provided an upper bound which cannot be
exceeded by whatever practical implementation. As a matter of
fact, modern digital communication systems come very close
to the Shannon bound.

Biological communication and information systems in con-
trast have evolved over millions of years. They have been
optimized by evolution subject to completely different design
criteria. Biological information channels will use a rate which
ensures survival and proliferation of the species. Signaling and
communiciation between cells, within the brain or between en-
tities of a species are developed by evolution to a degree such
that creatures are able to cope with environmental challenges.
Speed and capacity are not the primary concerns, if both are
sufficient they will no more be an objective of evolutionary
optimization.

On the other hand, for biological systems communication
and information exchange has to be extremely reliable in

a wide range of situations. If some information sources or
channels are not operational, their role should be taken over
by others, still functional. Massive parallelism seems to be the
solution to this problem in biological systems. The retina in
the human eye, inner hair cells in the auditory cochlea, and the
semicircular canals of the human ear, e.g., process information
in parallel and convey quantized signals to the brain. Nerve
tracts serve as channels and information is mainly processed
in the brain, often after local quantization and compression.
Low energy consumption paired with simplicity, efficiency and
adaptability are further important objectives for information
exchange in living organisms.

In this work, we study bio-inspired communication by
a certain class of models. A common signal is observed
by many sensors, each afflicted by noise. At each sensor,
observations are quantized to a finite number of states and
reported to a central unit. The measurement of each node is
then combined into a single decision, which is expected to
represent the original input signal. Three stages are typical for
this class of models: 1. multiple sensors which make stochastic
observations, 2. lossy compression by quantization at each
sensor and 3. information fusion at the central processing unit.

Such models are a subclass of so called stochastic pooling
networks, a denotation first coined by [1] for a binary detection
problem. This class of networks has turned out as useful
model for many applications and has induced a whole series
of publications. An overview of potential applications is given
in [2]. Artificial sensor networks, digitized beamforming,
stochastic resonance, biological neurons, cochlear implants
and also complex social networks are prominent examples and
widely investigated. An important background reference for
the present work is [3].

The effect that the presence of noise can enhance the
detection of weak signals is called stochastic resonance in
[4]. A model of the type used in this paper is employed in
the work [5] to explore this effect analytically. A common
Gaussian input signal X is observed by n sensors, each subject
to independent Gaussian noise, 0-1-quantization applies with
equal threshold values ϑ = E(X). The number of 1’s is then
added to form the output signal. Fig. 2 with binary quantization
and U = u(Y1, . . . , Yn) =

∑n
i=1 Yi specifies this model.

Simulation and numerical computations in [5] demonstrate in
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concert, that mutual information between input and output is
enlarged by the presence of noise, particularly as the number
of sensors increases and signals are mainly above thresholds.
The effect is called suprathreshold stochastic resonance in
[5]. It is of particular interest for bio-inspired, highly robust
communication channels.

In this paper, we approach the problem from an informa-
tion theoretic point of view. Mutual information, I(X;U),
between a certain stochastic input X and output U is used
to describe the amount of information a channel is able to
convey. We investigate mutual information stagewise between
(i) the input and its noisy observations, (ii) the observations
and the lossily quantized version hereof, and finally (iii)
between quantized input and the final output of the processing
unit. The main novel contribution of our work is to find the
optimum information preserving quantizer on one hand, and
the optimum information fusion rule on the other. The latter
problem leads to a generalized Knapsack problem, which is
hard to solve in general. We provide a greedy heuristic by
minimizing the decrease of entropy in each iteration step.
Amazingly, the resulting algorithm may be organized like the
Huffman tree for finding binary codes. Optimum quantizers
for absolutely-continuous random variables are demonstrated
to generate a discrete uniform distribution as output. Finally,
the data processing inequality allows us to interpret reliability
and performance of data transmission in a stochastic pooling
channel in accordance with what is observed for biological
systems. We commence with preparing some information
theoretic prerequisites in the next section.

II. MATHEMATICAL PREREQUISITES

To clarify notation we briefly introduce mutual information
between two random variables X and Z as

I(X;Z) = H(X)−H(X | Z) = H(Z)−H(Z | X).

H(X) denotes the entropy of random variable X and H(X |
Z) the conditional entropy of X given Z, cf. [6]. Mutual
information can be interpreted as the reduction of uncertainty
about X when Z is given, or equivalently as the amount of
information about X provided by Z.

Let Y be a discrete random variable with values in some
finite set Y = {y1, . . . , yN}, the support, and distribution p =
(p1, p2, . . . , pN ) with pi = P (Y = yi), i = 1, . . . , N . We
synonymously write H(Y ) = H(p1, . . . , pN ).

Let U denote the set of functions

u : Y → {0, 1, . . . ,m− 1}.

Each function u of this type is uniquely characterized by the
partitioning Y0,Y1, . . . ,Ym−1 of Y where

Yj = u−1({j}) = {y ∈ Y | u(y) = j},

u−1 denoting the preimage. Vice versa, each partitioning
Y0,Y1, . . . ,Ym−1 of Y defines some function u via

u(y) = j for all y ∈ Yj , j = 0, . . . ,m− 1.

For a given partitioning Y0,Y1, . . . ,Ym−1 of Y define

qj =
∑

yk∈Yj

pk, j = 0, . . . ,m− 1.

We next characterize functions u ∈ U which maximize the
mutual information I

(
Y ;u(Y )

)
.

Theorem 1: Let Y be a discrete random variable with sup-
port Y = {y1, . . . , yN} and distribution p = (p1, p2, . . . , pN ).
Then

max
u∈U

I
(
Y ;u(Y )

)
(1)

is attained at function u∗ if the corresponding partitioning
Y∗0 ,Y∗1 , . . . ,Y∗m−1 solves

max
Y0,...,Ym−1⊆Y

H
(
q0, . . . , qm−1

)
over all partitionings Y0, . . . ,Ym−1 ⊆ Y .
Proof. We first write

I
(
Y ;u(Y )

)
= H

(
u(Y )

)
−H

(
u(Y ) |Y

)
= H(q0, . . . , qm−1),

since H
(
u(Y ) | Y

)
= 0 and random variable u(Y ) is

governed by distribution (q0, . . . , qm−1). Maximizing the left
hand side over all functions u ∈ U hence means to seek a
partitioning Y0, . . . ,Ym−1 such that the corresponding values
q0, . . . , qm−1 maximize the entropy on the right.

¿From Theorem 1 we conclude that the solution of (1) is
given by the solution of the following 0-1 integer optimization
problem

max H(q0, . . . , qm−1)

such that qi =

N∑
j=1

pjxij , i = 0, . . . ,m− 1

m−1∑
i=0

xij = 1, j = 1, . . . , N

xij ∈ {0, 1}.

A. Special case: a knapsack problem

Solving (1) for the binary case m = 2 leads to a so
called knapsack problem. In general, the knapsack problem
may be written as a 0-1 integer linear program as follows.
Assume there are N items of weight wi and value vi each,
i = 1, . . . , N . The objective is to collect items such that the
total value is maximized and a given weight threshold W is
not exceeded, cf. [7],

max

N∑
i=1

vixi such that
N∑
i=1

wixi ≤W, xi ∈ {0, 1}. (2)

Since entropy is a Schur convex function, see [8], the
maximum in (1) is attained at (q0, q1) whenever |q1 − q0|
is minimum. A solution is given by a solution of knapsack
problem (2) with wi = vi = pi, i = 1, . . . , N and W = 1/2.

max

N∑
i=1

pixi such that
N∑
i=1

pixi ≤
1

2
, xi ∈ {0, 1}, (3)
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Fig. 1. Successive greedy partitioning by a hierarchical tree.

setting q0 =
∑N

i=1 pixi and q1 = 1− q0.
The case of a uniform distribution is particularly important

for modeling many sensor systems where each sensor and sub-
channel carries the same characteristics, see Section III. In the
case of a uniform distribution and dichotomous information
fusion, i.e., pi = 1/N , i = 1, . . . , N and m = 2, the solution
follows easily from (3) as

q0 = bN/2c/N, q1 = 1− q0,

with bN/2c elements contained in Y0 and dN/2e elements
contained in Y1.

In general, the knapsack problem is NP hard. However, there
is a dynamic programming approach for the 0-1 knapsack
problem (3) that runs in pseudo-polynomial time, see [7]. We
proceed by developing a heuristic which aims at minimizing
the decrease in each pooling step.

B. A greedy heuristic

The heuristic presented in this section relies on the follow-
ing postulate for entropy. Denote by qN−1 = pN−1 + pN for
some stochastic vector (p1, . . . , pN−1, pN ). It holds that

H(p1, . . . , pN−2, qN−1)

= H(p1, . . . , pN )− qN−1H(pN−1/qN−1, pN/qN−1).
(4)

The basic idea of the algorithm consists of successively
forming subsets by adding the two smallest probabilities until
exactly m remaining probabilities and subsets are left. In
each step entropy is decreased, as can be easily seen from
equation (4). However agglomerating the smallest probabilities
results in the least reduction of entropy, which is demonstrated
by the following theorem. The algorithm hence utilizes the
greedy principle of minimizing the decrease of entropy in each
iteration step.

For a stochastic vector p = (p1, . . . , pN ) denote by p[k,l],
1 ≤ k 6= l ≤ N , the stochastic vector of dimension N − 1
evolving from p by adding components k and l, explicitly for
k < l,

p[k,l] = (p1, . . . , pk + pl, . . . , pl−1, pl+1, . . . , pN ).

Theorem 2: For any stochastic vector p = (p1, . . . , pN )
with p1 ≥ · · · ≥ pN−1 ≥ pN it holds that

H(p[k,l]) ≤ H(p[N−1,N ]) for all 1 ≤ k, l ≤ N, (5)

stating that entropy is largest if the two smallest probabilities
are added.
Proof. We first fix k ∈ {1, . . . , N}, let 1 ≤ r ≤ l ≤ N and
consider p[k,l]. ¿From (4) it follows that

H(p[k,l]) = H(p)− (pk + pl)H
( pk
pk + pl

,
pl

pk + pl

)
.

Hence,

H(p[k,l])−H(p[k,r])

= (pk + pr)H
( pk
pk + pr

,
pr

pk + pr

)
− (pk + pl)H

( pk
pk + pl

,
pl

pk + pl

)
= −pr log pr + (pk + pr) log(pk + pr)

+ pl log pl − (pk + pl) log(pk + pl)

≥ 0,

since g(p) = p log p− (pk + p) log(pk + p) is a monotonically
decreasing function of p ∈ (0, 1), as may be seen from its first
derivative.

For any pair of k, l it now follows from the above that

H(p[k,l]) ≥ H(p[k,N ]) = H(p[N,k])

≥ H(p[N,N−1]) = H(p[N−1,N ])

which completes the proof.
Theorem 2 suggests a greedy algorithm for determining a

partitioning into two subsets (m = 2).
Successively merge the two smallest probabilities
until two probabilities are left. The indices which
correspond to the addends of each determine the
final partitioning.

(6)

In a greedy fashion, in each step the decrease of entropy is
minimized, aiming at retaining maximum entropy in the final
partitioning.

The algorithm may be organized analogously to the Huff-
man code tree. Figure 1 demonstrates the principle. This exam-
ple also shows that the global optimum may not be achieved.
The final partition into two subset by the greedy algorithm is
Y0 = {1, 3, 4} and Y1 = {2, 5, 6} with probabilities q0 = 0.6
and q1 = 0.4. The optimum partitioning however is Y ′0 =
{1, 2} and Y ′1 = {3, 4, 5, 6} with probabilities q′0 = q′1 = 0.5.

One might conjecture that the greedy algorithm yields the
optimum partitioning in case of a uniform distribution p0 =
p1 = · · · = pN−1. Obviously this holds true if N = 2k for
some integer k. However, the maximum mutual information is
not attained in general. The smallest case where it fails to find
the maximum for uniformly distributed input is N = 6. The
partitioning found is Y0 = {y1, y2, y3, y4} and Y1 = {y5, y6},
while the optimum is attained at Y∗0 = {y1, y2, y3} and Y∗1 =
{y4, y5, y6} with q∗0 = q∗1 = 0.5.

If the probabilities are of the form pi = 2−ki , ki ∈ N, i =
1, . . . , N , and m = 2, greedy heuristic (6) will find the
partitioning which maximizes mutual information (1). In order
to prove this, let m = 2 and

pi = 2−ki , k1 ≤ · · · ≤ kN ∈ N (7)

2526



+

+

+

u(Y1, . . . , Yn)

Yn

Y2

Y1

X

V1

V2

Vn

W1

W2

Wn

ϑ1,j

ϑ2,j

ϑn,j

Fig. 2. Condensing Information from a many-sensor system.

such that p1 ≥ · · · ≥ pN .
Proposition 3: If (7) holds, then necessarily pN−1 = pN .

Proof. We assume on contrary that kN−1 < kN and use the
representation ki = kN−1 − ri for certain integers ri. Then
2−ki = 2ri 2−kN−1 , i = 1, . . . , N − 1, and

1 =

N∑
i=1

2−ki =
(N−1∑

i=1

2ri
)
2−kN−1 + 2−kN .

Abbreviating sN−1 =
∑N−1

i=1 2ri yields

2−kN = 1− sN−12−kN−1 ≥ 2−kN−1 ,

since the term in the middle is positive. Hence kN ≤ kN−1,
a contradiction. It follows that kN = kN−1.

Now, if the probabilities are of the form pi = 2−ki , then
by Proposition 3 algorithm (6) will terminate with two proba-
bilities which are equal to 1

2 , corresponding to the maximum
achievable entropy. This is because in each iteration step of
(6), by addition of the smallest equal probabilities a stochastic
vector is generated with dyadic entries of the type 2−`i .

III. MODELING MANY-SENSOR SYSTEMS

A stochastic signal X is observed by many sensors labeled
1, 2, . . . , n. Each observation is subject to additive random
noise W1,W2, . . . ,Wn, which may be due to random haziness
of the sensor or disturbance of the information perceived by
the sensor. Each sensor i applies m-ary quantization with
thresholds ϑi,1 ≤ · · · ≤ ϑi,m−1, i = 1, . . . , n, to yield m-
ary output random variables Y1, Y2, . . . , Yn. The purpose of
function

u : {0, . . . ,m− 1}n → {0, 1, . . . ,m− 1}

is to condense the constituent information about the jointly
observed signal X into a single decision U = u(Y1, . . . , Yn).
For m = 2 the decision will be dichotomous, but we also allow
for discrimination into m different classes. The basic model
is depicted in Fig. 2. The joint distribution of the random
variables X and W1, . . . ,Wn will be specified later.

In this model, information is conveyed in three steps, from
X onto the noisy versions V1, . . . , Vn, quantization from

V1, . . . , Vn to Y1, . . . , Yn and finally information condensa-
tion from Y1, . . . , Yn into U = u(Y1, . . . , Yn). The corre-
sponding mutual information I

(
X; (V1, . . . , Vn)

)
, I
(
Vi;Yi),

i = 1, . . . , n, and I
(
(Y1, . . . , Yn);U

)
will be considered in

the following. We use boldface characters to denote random
vectors V = (V1, . . . , Vn) and Y = (Y1, . . . , Yn).

A. The n-look channel

This type of channel is well investigated for the case of
Gaussian input X with variance σ2

X and independent iden-
tically distributed Gaussian noise W1, . . . ,Wn with variance
σ2
W , see [3] and [6]. Direct application of the formula for

jointly n-dimensional distributed Gaussian random variables
yields

I
(
X,V ) =

1

2
log
(
1 + n

σ2
X

σ2
W

)
.

B. The best quantizer

The key problem here is to determine the threshold values
ϑ1 ≤ ϑ2 ≤ · · · ≤ ϑm−1. We omit index i and describe the
quantizer for each sensor by some quantizing function q with
image {0, 1, . . . ,m − 1} and threshold values ϑ1, . . . , ϑm−1.
Hence,

q(v) =

m−1∑
j=0

j I{ϑj < v ≤ ϑj+1}

with ϑ0 = −∞ and ϑm = ∞. Let Y = q(V ). The problem
now is to determine ϑ1, . . . , ϑm as to

maximize I(V ;Y ) = I
(
V, q(V )

)
.

over all quantizing functions q.
Similar to the proof of Theorem 1 it follows that

I(V ;Y ) = H(Y )−H(Y | V )

= H
(
q(V )

)
= H(q0, . . . , qm−1),

with qk = P (Y = k), k = 0, . . . ,m − 1. If V has density
f(v) then the maximum I(V ;Y ) is attained for a uniform
distribution. Hence the optimum threshold values ϑk are such
that

qk =

∫ ϑk+1

ϑk

f(v)dv = P (Y = k) =
1

m

for all k = 0, . . . ,m − 1, where ϑ0 = −∞ and ϑm = ∞.
Mutual information for the optimum quantizer q has the value
I(V ;Y ) = logm.

The same information-theoretic principle for optimum quan-
tization is applied to coded modulation systems in [9].

C. Optimum information fusion

This is the most difficult step, it concerns the selection of a
decision function u and needs the preparatory work from Sec-
tion II. The authors [3], e.g., employ u(y1, . . . , yn) =

∑n
i=1 yi

to compress information into a single value in {0, 1, . . . , n}.
This choice may not be optimum as will be shown later. The
general objective is to obtain information about the outcome
of X most reliably.
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Under the above model, Y = (Y1, . . . , Yn) is a discrete
random vector with values in {0, 1, . . . ,m − 1}n. Assume
its distribution is described by the stochastic vector p =
(p1, p2, . . . , pN ) with N = mn. We seek to maximize mutual
information between Y and u(Y ) over all functions u which
map Y onto a set of decisions {0, 1, . . . ,m− 1}.

The optimum u is characterized by Theorem 1. By addition,
p1, . . . , pN are grouped into probabilities q0, . . . , qm−1 such
that H(q0, . . . , qm−1) is maximized. As mentioned before, this
leads to a generalized knapsack problem whose solution is
hard to achieve in general. For m = 2 greedy heuristic (6)
can be used to reach a near optimal solution.

D. Successive data processing

Using the data processing inequality (see [6]) mutual infor-
mation I(X;U) can be upper bounded by

I(X;U) ≤ min
{
I(X;V ), I(V ;Y ), I(Y ;U)

}
. (8)

This holds since U = u
(
q(V )

)
is a function of V such that

X → V → U forms a Markov chain, see [6], p. 32. Here,
q denotes the function which componentwise applies some
quantizer q as described in Section III-B. Hence

I(X;U) ≤ min{I(X;V ), I(V ;U)}

holds. Furthermore, V → Y → U forms a Markov chain such
that

I(V ;U) ≤ min{I(V ;Y ), I(Y ;U)},

entailing inequality (8).
We now consider the case of a Gaussian input X with

variance σ2
X and i.i.d. Gaussian noise variables W1, . . . ,Wn

with variance σ2
W . The result is

I(X;V ) =
1

2
log
(
1 + n

σ2
X

σ2
W

)
.

We furthermore assume that the total channel is designed
in an optimal way in the sense that optimum quantizers
and optimum information fusion are applied. In this case
I(Vi;Yi) = logm holds for all i = 0, . . . ,m − 1. Iteratively
applying the chain rule for information (see [6]) yields

logm = I(Vi;Yi) ≤ I(V ;Y ) ≤ n logm.

Finally, optimum information fusion means to group the
discrete uniform distribution with probabilities m−n into
m probabilities m−1. This is obviously possible yielding
I(Y , U) = logm, where the right hand side is the trivial
bound by the logarithm of the support cardinality.

In summary, by (8)

I(X,U) ≤ min
{
logm,

1

2
log
(
1 + n

σ2
X

σ2
W

)}
(9)

follows. Since optimum quantization and information fusion
in the sense of maximum mutual information is assumed, any
other type of quantization and fusion is upper bounded by (9).

The upper bound in equation (9) as a function of n, B(n),
say, gives some interesting insight into the resilience of the

many-sensor channel with information combining for Gaussian
input and Gaussian noise. Obviously mutual information is
bounded by the number of bits to represent the discrete image
U of input X . This refers to the first term, logm, in the above
minimum.

Resilience of the total system is represented by the second
term considered as a function of n. This is a logarithmic
function, which is concave and increases very slowly. Hence, if
logm is the active bound, or if a large number of subchannels
is available, the failure of only a few does not change the
performance of the whole system, or deteriorates it only very
little. On the other hand, if only a few subchannels are left,
the failure of some leads to a drastic degradation of the whole
system. This is an interesting effect which is also observed in
biological information processing. Observing the typical cause
of Alzheimer disease teaches us that in the beginning disrupted
information channels have only minor effect on the patients
abilities, but passing a certain threshold leads to a drastic loss
of cognition, reaction and situational awareness.

IV. CONCLUSIONS

The main contributions of this paper are characterizations
of optimal quantization and information fusion rules for a
bio-inspired parallel channel model, called stochastic pooling
network. In the case of discrete input distribution this leads to a
knapsack problem, which is hard to solve in general. A greedy
heuristic, similar to the Huffman coding tree, is developed.
For input distributions with density f the problem is easily
solved by generating discrete uniformly distributed output.
These findings are used to combine separate observations by
noisy sensors into a single optimal m-ary decision.
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