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Abstract—Rate and power allocation in OFDM sys-
tems is discussed extensively in literature. These ap-
proaches are either based on a finite set of realizable
rates or make use of a continuous rate-power func-
tion. The motivation of this correspondence was to
investigate how to transfer efficiently continuous rate
allocations to realizable ones. To increase performance,
we suggest to skip some realizable rates. Then, our
proposed algorithm for single-user resource allocation
on the set of realizable rates produces the same alloca-
tion independent of the initialization. This algorithm
achieves the optimal solution when the given lower
and upper bound for the optimum are identical. Fur-
thermore, we suggest an initialization procedure which
comes very close to this allocation. Finally, we present
simulation results to assess some quantity measures of
our approach.

Index Terms—approximation error, OFDM, rate-
power function, resource allocation

I. Introduction
Orthogonal frequency division multiplexing (OFDM) is

expected to be the transmission technology of next genera-
tion mobile networks, e.g., WiMAX or LTE Advanced. The
advantages of OFDM are flexibility of allocating subcarri-
ers to users, adaptive power allocation, high spectral effi-
ciency, low receiver complexity and simple implementation
by the inverse fast Fourier transform (IFFT) and FFT, see
[1], [2]. OFDM can also be integrated with multiple-input
multiple-output (MIMO) techniques to raise the diversity
gain and increase capacity, see [1], [3]. Additionally, the
OFDM network architecture is a qualified candidate for
utilization of assigned spectrum by means of dynamic
spectrum access (DSA), see [4].

One of the crucial problems in OFDM systems is rate
and power allocation of (bunched) subcarriers in the
available frequency band. Various studies have devised
resource allocation algorithms. In [5], [6], [7], only integer
bit steps are considered. This restriction allows for a prove
of optimality of their proposed single-user allocation algo-
rithms. [5] suggests to use the water-pouring distribution
from [8] to achieve an optimal solution for the same
problem where the rates are real numbers. By rounding
the real-valued solution a good initialization for the integer
problem is attained. This approach motivates to relax the
multi-user optimization problem allowing for continuous
rates following that distribution. Fast heuristics exploiting

that approach for sub-optimal multi-user allocation are
suggested in [9], [10], [11]. However, in those heuristics the
transfer of the continuous rate allocation to the system-
specific finite set of achievable rates is neglected. Addition-
ally, it is not mentioned how the approximated function
or its parameters are obtained.

In this paper, we propose an algorithm for single-user
resource allocation on the set of realizable rates producing
the same allocation independent on the initialization. This
algorithm achieves the optimal solution when the given
lower and upper bound for the optimum are identical. Fur-
thermore, we suggest an initialization procedure exploiting
the continuous rate-power function which comes very close
to this allocation. We discuss two candidates of continuous
rate-power functions. For assessing quantitative measures
of our approach we present some simulative results.

The rest of the paper is organized as follows. In Sec-
tion II, we present discrete, i.e., realistic, rate-power func-
tions and deduce main properties which are transfered to
continuous rate-power functions. Resource allocation in
OFDM systems in general is presented in Section III. For
our aim it is sufficient to investigate single-user resource
allocation which is introduced and discussed in Section IV.
In particular, aspects of optimality and initialization based
on continuous rate-power functions are observed. After-
wards, the proposed methods are evaluated and discussed
on simulative basis in Section V. Finally, we conclude this
paper in Section VI.

II. Rate-Power Functions
In a given OFDM system a fixed and finite set of feasible

transmission rates R = {η0, . . . , ηS} is given where S ∈ N
denotes the number of nonzero rates. In this work the rates
are sorted in ascending order, i.e., ηk < ηl, ∀ 0 ≤ k < l ≤
S. Furthermore, the rate η0 = 0 is included to indicate
unused subcarriers. This set depends on the available
combinations of modulation schemes, channel coding rate,
and MIMO mode and is normalized to the subcarrier
bandwidth, thus, representing spectral efficiency. In the
system specification the minimal required signal-to-noise
ratio (SNR) according to some bit-error rates (BER) for
each feasible transmission rate is usually tabulated. Such
a table is shown for the WiMAX Standard IEEE 802.16e-
2005 given a BER of 10−6 for the multi antenna case
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(MIMO-STBC, multiple-input multiple-output - space-
time block code) in Table I, see [12], [13]. Overall, the rate-

Table I
Minimal required SNRs for BER=10−6, IEEE 802.16e-2005,

MIMO-STBC, see [13].

η 0.5 1.0 1.5 2.0 3.0
SNR [dB] 1.0 3.0 7.0 9.0 14.0

η 4.0 4.5 6.0 8.0 9.0
SNR [dB] 17.0 19.0 25.0 27.0 30.0

power function ψd : R → R+ maps a rate η ∈ R on the
minimal received SNR to realize this rate. If a subcarrier is
unused (η = 0), the corresponding minimal SNR demand
should be zero, i.e., ψd(0) = 0.
The inverse rate-power function

(ψd)−1(ρ) = max{η ∈ R | ρ ≥ ψd(η)}

is a step-function indicating the maximal rate for a given
SNR ρ. For optimization it is much more convenient
to have a continuously differentiable, convex rate-power
function ψ : R+ → R+. Such a function with ψ(0) = 0 is a
candidate for a continuous rate-power function. A natural
candidate for rate r and parameters b, c > 0 is

ψpot(r) = b (cr − 1)

which can be easily derived from the Shannon capacity,
i.e., b = 1, c = 2. However, we are also discussing

ψpoly(r) = b rc b > 0, c > 1

as generalized candidate from [10].

III. Resource Allocation in OFDM Systems

In this section we briefly introduce the so-called margin
adaptive problem minimizing the total transmit power
subject to some rate constraints in a multiuser OFDM
downlink scenario. We consider a system with N sub-
carriers and K users. Each user k ∈ {1, . . . ,K} has a
requirement of Rk, Rk ∈ R+, bits per OFDM symbol.
Each subcarrier can be used by only one user at any given
time which is optimal, see [14].
Perfect channel state information (CSI) is assumed to be

available during transmission. Let hk,n denote the channel
gain of subcarrier n for user k and σ2

k,n the according noise
power. Hence, uk,n = hk,n/σ

2
k,n is the carrier-to-noise ratio

(CNR). If power pk,n is expended on subcarrier n for the
transmission to user k, then, pk,n uk,n is the received SNR.
Using the interrelation between received SNR and rate
described given by rate-power functions ψk, see Section II,
rk,n = ψ−1

k (pk,n uk,n) ≥ 0 is the corresponding rate.
The objective is to find a subcarrier assignment of

minimum total transmit power such that each user receives
his required data rate. In mathematical terms this reads

as

min
K∑
k=1

N∑
n=1

ψk(rk,n)
uk,n

(1)

s.t.
N∑
n=1

rk,n ≥ Rk, k = 1, . . . ,K

N∑
n=1

rk,n r`,n = 0, k, ` = 1, . . . ,K, k 6= `

Problem (1) is a complicated mixed continuous and com-
binatorial optimization problem since a joint decision on
subcarrier and rate allocation has to be made. As we are
interested in approximation errors on ψk we decouple the
problem intoK independent single-user problems by fixing
the subcarrier assignment. This will be done by using
BABS from [10] to assess the number of subcarriers per
user and a simple greedy allocation scheme. Afterwards,
the rate and power allocation is performed independently
for all users. Consequently, we give a detailed investigation
of single-user resource allocation in the next section.

IV. Single-User Resource Allocation
In this section we introduce a general scheme to solve

a feasible single-user resource allocation problem with a
discrete set of rates R. First, we discuss under which
conditions the final (discrete) resource allocation is op-
timal. Additionally, a lower and upper bound is given
in (4). The theoretical insight will motivate the following
resource allocation scheme. The proposed scheme enables
for initialization which can speed up the computation
time. We briefly describe optimal water-filling for two
continuous rate-power functions. Those functions are used
for some of the initialization strategies which are discussed
at the end of this section.

A. Optimality of Discrete Single-User Resource Allocation
For determination of optimality the concept of the

following property of a rate vector plays an important role.
This property was introduced in [5] for equidistant rates,
which means ηk − ηk−1 ≡ a, k = 1, . . . , S holds. A rate
vector r is called efficient, if

L− (rn, un) ≤ L+ (rm, um) ∀n,m = 1, . . . , N (2)

holds, where

L+ (η, u) =
{
ψd(inc(η))−ψd(η)
u(inc(η)−η) inc(η) > η

∞ elsewise

L− (η, u) =
{
ψd(η)−ψd(dec(η))
u(η−dec(η)) dec(η) < η

0 elsewise
, with

inc(η) = min{r ∈ R | r > η ∨ r = ηR},
up(η) = min{r ∈ R | r ≥ η ∨ r = ηR},

dec(η) = max{r ∈ R | r < η ∨ r = η0 = 0}, and
down(η) = max{r ∈ R | r ≤ η ∨ r = η0 = 0}.
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Note that L+ and L− indicate the transmit power per
rate, needed to increase or decrease to the next in size
rate. A related property is exploited in [6] for integer rates.
Evaluating (2) for n = m with η ∈ R \ {0, ηS}, it follows

ψd(η)− ψd(dec(η))
η − dec(η) ≤ ψd(inc(η))− ψd(η)

inc(η)− η . (3)

A discrete rate-power function ψd is called discrete convex
if (3) holds for all η ∈ R \ {0, ηS}. Hence, efficiency
can only be used as criterion for optimality, if the rate-
power function in use is discrete convex. If it is non-
discrete convex, however, it is reasonable to neglect the
rates which violate condition (3) as they occur in optimal
rate allocation in exceptional cases only. Thus, for the
applied example MIMO-STBC, see Table I, we take out
and mark in red the rates 0.5, 1.5, and 6. In [15] it is
stated that a rate allocation r is optimal with respect to a
single-user problem with equidistant rates if and only if r is
efficient and tight, i.e., the rate constraint

∑N
n=1 rn = R is

exactly fulfilled. It is easy to see and proof that equidistant
rates are necessary for this optimality criterion.

For not equidistant rates and a discrete convex rate-
power function it holds that if r is efficient and tight
the rate allocation is optimal. But there might be rate
demands to which no tight and efficient rate allocation
exists. However, to every rate demand R, which can be
fulfilled, there exist efficient rate allocations r− and r+

with
∑N
n=1 r

−
n ≤ R ≤

∑N
n=1 r

+
n . This insight is used for

the single-user resource allocation in next section as well
as for the initialization procedure.

If using Algorithm 1 from next section with rate initial-
ization r = 0 all intermediate rate allocations are efficient
such that the next to last and last rate allocation provide
lower and upper bounds p− and p+ which are close to the
optimal power allocation p∗.

p− ≤ p∗ ≤ p+ (4)

B. Discrete Single-User Resource Allocation

We assume to have a discrete convex rate-power func-
tion in the following which is motivated in the last section.
We suggest Algorithm 1 for rate allocation which enables
for rate initialization in the discrete set of rates R. Within
the outer repeat-loop the rate on the subcarrier with high-
est power per rate L− is decreased while the rate demand
is fulfilled. Then, the rate on the subcarrier with lowest
power per rate L+ is increased until the rate demand is
fulfilled again. As L− and L+ are increasing in r and both
L−(r, u) = L+(dec(r), u) and L−(inc(r), u) = L+(r, u)
hold for r 6= 0 and r 6= ηS , respectively, the alternating
procedure of decreasing and increasing will converge to
an efficient solution. Note that the selection of argmin
and argmax should be unique in order to achieve the
same solution independent on the initialization. A simple,
sub-optimal, greedy approach for ReduceRates(·) is
implemented which is executed only if the rate demand

Algorithm 1 EfficientRateAdmission(R, R, u)

r ← InitializeRates(R, R, u)
repeat

while
N∑
n=1

rn ≥ R do

m ← argmaxn=1,...,N L−(rn, un)
rm ← dec(rm)

end while
repeat

m ←argminn=1,...,N L+(rn, un)
rm ← inc(rm)

until
N∑
n=1

rn ≥ R

until IsEfficient(r)
return ReduceRates(r, R, R, u)

is exceeded. This function might improve the allocation
slightly. Common approaches do not decrease and increase
the rate allocation, but do solely increase or decrease it, [5],
[7]. We refer to the solely increasing approach as greedy.
The usage of the continuous approximation of the rate-
power function for initialization is only reasonable if the
solution can be computed efficiently which is the case
for ψpot and ψpoly, see next section.

C. Optimal Water-Filling

The classical water-filling problem, see [16], is formu-
lated for continuous rates. For the optimal resource alloca-
tion the water level, i.e., the quotient of the gradient of the
continuous rate-power function and the CNR ψ′(rn)/un,
needs to be constant for all subcarriers with positive
rate. The analogon for the discrete case is that all se-
cants L+(rn, un) should be the same. As this cannot
be achieved in general this is relaxed to the efficiency
condition (2).

In [17] it is shown that for ψpot and equidistant rates
the optimal discrete solution is between the rounded down
and rounded up continuous solution if the approximation
is perfect, i.e., the discrete rate-power function ψd and
the approximation ψpot are identical on the set of rates R
i.e, ψd(η) = ψpot(η) ∀ η ∈ R, see also [5] for a special
case. Statements on optimality are unknown to us if the
assumption of perfect approximation is violated.

According to [9], the optimal water-filling solution us-
ing ψpot can be directly computed as

r∗n = R

N
+ logc

(
un
ḡ(u)

)
, (5)

where ḡ(u) denotes the geometric mean of the CNRs.
While there exist negative rates, (5) needs to be evaluated
excluding the subcarriers with negative rates, cf. [17].

In the case of ψpoly the water-filling solution may be
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computed efficiently as well. It is given as

r∗n = R

N

c−1
√
un

ā ( c−1
√

u)
,

where ā ( c−1
√

u) is the arithmetic mean of the component
wise (c − 1)-th root of the CNRs. For this rate-power
function all rates are nonnegative.

Note that for both rate-power functions the optimal rate
allocation is independent of the parameter b such that we
use b = 1 in the following.

D. Strategies for Initialization

We distinguish initialization with and without usage of
(continuous) water-filling. The optimal rate allocation for
the relaxed optimization problem using an adequate con-
tinuous rate-power function as approximation is denoted
as r∗ . Then the types of initialization are given in Table II,
where the evaluation on vectors is performed component
wise. The function rd : R+ → R returns for all nonnegative

Table II
Different initialization variants for InitializeRates(·) .

Name Definition Name Definition
empty r = 0 full r = ηS1
rd_avg r = rd(R/N) down_opt r = down(r∗)
rd_opt r = rd(r∗) up_opt r = up(r∗)

rates the nearest one of the discrete set R, i.e.,

rd(r) = max {ηk ∈ R | r ≥ (ηk−1 + ηk)/2, k = 0, . . . , S} ,

where η−1 = 0 holds.
As we suggest to make the solution efficient, see (2) and

Algorithm 1, if possible, it is obviously clever to come as
close as possible to an efficient solution during initializa-
tion already. This can be achieved using Algorithm 2 called
with the optimal continuous solution r∗. In x the secant
of power per rate is stored. Those values depict L+ of the
final initialization if the rate is decreased and L− if the rate
is increased, respectively. In order to keep the maximal L−
value after initialization as low as possible and the minimal
L+ as high as possible the subcarriers with lowest xn are
rounded up and with highest xn are decreased. During the
while-loop the sum rate is kept next to the target rate R
while rounding the rate of each subcarrier exactly once.
Note that the asymmetric usage of up and dec ensures
that there is no rate r ∈ R with up(rn) < r < dec(rn).
In case of equidistant rates and a perfect approximating

rate-power function ψpot this initialization leads to the
optimal solution, see Section IV-C. Hence, this approach
should be the most promising one. Note that the calcula-
tion of L− and L+ needs to be performed in Algorithm 1
anyway such that the computational effort against other
initializations is very low.

Algorithm 2 EfficientInit(R, R, u, r)
Requires: 0 ≤ r ≤ ηS1
A ← {1 ≤ n ≤ N | 0 < rn < ηS}
x ←

(
ψd(up(rn)−ψd(dec(rn))

up(rn)−dec(rn)

)
n∈A

while A 6= ∅ do

if
N∑
n=1

rn ≤ R then
m ← argminn∈A xn
rm ← up(rm)

else
m ← argmaxn∈A xn
rm ← dec(rm)

end if
A ←A \ {m}

end while
return r

V. Evaluation
The great benefit of Algorithm 1 is that for a discrete

convex rate-power function the same resource allocation
is achieved independently from initialization. Hence, the
number of rate adaptations in Algorithm 1 is used as qual-
ity measure. Before discussing the results the simulation
setup is outlined.

A. Simulation Setup
Users are equally distributed on a circular ring with

radius from 20 to 100 m. They experience a path loss
proportional to d−α. The individual channel gains per
subcarriers are independent and identical exponentially
distributed. The traffic type is randomly chosen according
to the parameters from Table III. Video and audio traffic
have a constant, normalized rate demand, while data rates
are exponentially distributed. Hence, the sum rate of sce-
narios varies, even if the number of users and subcarriers
is fixed. However, to enable repetitions of the experiments
for same sum rate, the rates are uniformly adapted. The
subcarrier assignment is based on BABS, see [10], to
determine the number of assigned subcarrier per user.
Afterwards the subcarrier assignment is performed in a
simple greedy manner.

Table III
Simulation parameters.

Parameter Values
Exponent of radial attenuation α = 2.5
User distances to BS [m] d ∈ [20, 100]
Video/Audio/mean data rate [Bits/s] (16, 4, 8)
Probability of video, audio, and data (0.1, 0.4, 0.5)

B. Results
a) Greedy against Algorithm 1: Obviously the num-

ber of rate adaptations for Algorithm 1 is higher as in the
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greedy approach where rates are increased only. However,
even for the initialization down_opt the sum power can
be improved up to 4% on average for scenarios with an
average rate demand of 6 per subcarrier, i.e., the cell load
is L = 6/9 = 2/3 as 9 is the maximal rate, see Table I.

b) Best Approximation of Rate-Power Function:
Comparison of the rate-power functions shows that ψpot

outperforms ψpoly. Firstly, the optimal parameter over
different loaded scenarios is less volatile. Secondly, the
number of adaptations is significantly lower. Although the
best approximation parameter c depends on the load we
suggest to take c = 2 resulting in ψpot(r) = 2r − 1. This
is the best parameter on average in simulation as well as
the value motivated by the Shannon capacity.

c) Non-Discrete Convex Against Discrete Convex:
Simulative investigations have shown that the number of
adaptations and the sum power are both higher if using
the non-discrete convex rate-power function instead of
the discrete convex rate-power function skipping the non-
discrete convex rates, see Table I. Obviously, the number
of adaptations should be lower, if there are less rates.
Furthermore, the algorithm is unaware of the fact that
increasing (decreasing) the rate two steps would be better
in terms of the transmit power per rate as increasing
(decreasing) just one step if a non-discrete convex rate
is met. The number of operations for the discrete convex
function reduces up to 40% whereas the power reduction is
roughly 1%. However, reduction strongly depends on the
fact how many rates on the subcarriers are in the region
of non-discrete convex rates.

d) Impact of Initialization: As depicted in Table IV
Algorithm 2 clearly outperforms the other initializations
while not being more complex than the ones using a
continuous rate-power function.

Table IV
Average number of adaptations for K = 1, N = 100, c = 2,

and load L = 3/9 = 1/3 using various initializations.

Name # of adapt. Name # of adapt.
empty 303.13 full 398.19
avg_round 129.09 down_opt 43.70
rd_opt 27.14 up_opt 56.91
Algorithm 2 4.53

e) Choice of Algorithms: Some simulative studies
using ψpot(r) = 2r − 1 suggest that if Algorithm 2 is used
Algorithm 1 may be skipped if the power loss of circa 1%
on average and about 3% at maximum is tolerable.

VI. Conclusion
In this paper we presented a near optimal single-user

resource allocation algorithm for OFDM systems which
produces the same allocation independent of the initializa-
tion. The latter holds for discrete convex power functions
with arbitrary rate steps. If the given power function is
non-discrete convex, which is the case for some practical

systems, see Table I, we recommend to skip the non-
discrete rates generally leading to better results. We pre-
sented tight lower and upper bounds for the optimum.
Furthermore, we suggested an algorithm for initialization
which is based on a continuous approximation of the rate-
power function which comes close to the optimal solution.
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