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Abstract—We study the achievable rate with receivers based on
synchronized detection and iterative code-aided channel estima-
tion for stationary Rayleigh flat-fading channels. The main idea
behind this type of receivers is that—additionally to the pilot sym-
bols which are used for the initial channel estimation and coher-
ent detection/decoding—the channel estimation is enhanced by it-
eratively feeding back reliability information on the data symbols
acquired by the channel decoder. For a specific type of such a re-
ceiver, we derive an upper bound on the achievable rate. Based on
an approximation of the upper bound, which is not a closed-form
expression, we are able to upper-bound the possible performance
gain when using this specific receiver based on code-aided channel
estimation in comparison to receivers using synchronized detec-
tion with a solely pilot based channel estimation. Furthermore, we
compare this approximate upper bound with a lower bound on
the achievable rate with joint processing of data and pilot symbols
given in [1]. In addition, we show which part of the mutual infor-
mation between the transmitter and the receiver cannot be ex-

ploited by the given receiver structure using synchronized detec-
tion in combination with iterative code-aided channel estimation.

I. INTRODUCTION

In many mobile communication receivers, the channel is

estimated based on pilot symbols to allow for a coherent detec-

tion and decoding (synchronized detection) in a separate step.

However, in recent years receivers using iterative code-aided

channel estimation got into the focus of research, see, e.g.,

[2], [3]. The main idea behind this type of receivers is that—

additionally to the pilot symbols which are used for an initial

channel estimation and detection/decoding—the channel esti-

mation is enhanced by iteratively feeding back reliability infor-

mation on the data symbols acquired by the channel decoder.

Subsequently, this enhanced channel estimate is used in a

further detection/decoding step, permitting enhanced decoding

results, see Fig. 1. To evaluate the possible performance gain

that can be achieved by receivers using iterative code-aided

channel estimation and synchronized detection in comparison

to receivers based on synchronized detection and a solely pilot

based channel estimation, we are interested in the achievable

data rate with such a type of receiver. Therefore, within this

work, we study the achievable rate with iterative code-aided

channel estimation based receivers. For a specific type of re-

ceiver based on iterative code-aided channel estimation, which

is a slight modification of the typically studied code-aided
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Fig. 1. Receiver based on iterative code-aided channel estimation

channel estimation based receiver, we discuss which part of the

mutual information between the transmitted data sequence and

the observation sequence at the receiver side can be retrieved.

Furthermore, we derive an upper bound on the achievable rate

with this type of receiver for the case of a stationary Rayleigh

flat-fading channel. The given upper bound is not a closed-

form expression; however, for small channel dynamics we are

able to give an approximation of this upper bound in closed

form. This approximative upper bound enables us to evaluate

the maximum possible gain when using this type of iterative

code-aided channel estimation and synchronized detection

based receiver in comparison to the conventional approach us-

ing synchronized detection in combination with a channel es-

timation which is solely based on pilot symbols. Furthermore,

we compare this approximate upper bound with a lower bound

on the achievable rate with joint processing of pilot and data

symbols, i.e., with the optimum receiver processing, given in

[1]. In addition, the derivation reveals why we apply the above

mentioned slight modification of the receiver with respect to

the typical iterative code-aided channel estimation based re-

ceiver and shows that this receiver cannot retrieve the complete

mutual information between the transmitter and the receiver.

II. SYSTEM MODEL

We consider a discrete-time zero-mean jointly proper Gaus-

sian flat-fading channel with the I/O-relation

y = Xh+ n (1)

with X = diag(x). Here, the diag(·) operator generates a

diagonal matrix whose diagonal elements are given by the

argument vector. The vector y contains the channel output

symbols in temporal order. Analogously, x, n, and h contain

the transmit symbols, the additive noise samples, and the

channel fading weights. All vectors are of length 2N + 1.
The samples of the additive noise process are i.i.d. zero-

mean jointly proper Gaussian with variance σ2
n. The channel

fading process is zero-mean jointly proper Gaussian with the
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autocorrelation function rh(l) = E[hk+lh
∗
k]. Its variance is

given by rh(0) = σ2
h and its PSD is defined as

Sh(f) =
∞
∑

m=−∞

rh(m)e−j2πmf , |f | ≤ 0.5. (2)

We assume that the PSD exists, which for a jointly proper

Gaussian fading process implies ergodicity. We assume the

PSD to be compactly supported within [−fd, fd] with fd being

the maximum Doppler shift and 0 < fd < 0.5. I.e., Sh(f) = 0
for f /∈ [−fd, fd]. The assumption of a PSD with limited

support is motivated by the fact that the velocity of the

transmitter, the receiver, and of objects in the environment

is limited. To ensure ergodicity, we exclude fd = 0.
The transmit symbol sequence consists of i.i.d. zero-mean

proper Gaussian data symbols with an average power σ2
x and

each L-th symbol is a pilot symbol with power σ2
x. The pilot

spacing is chosen such that the channel fading process is

sampled at least with Nyquist rate, i.e., L < 1/(2fd).
The processes {xk}, {hk}, and {nk} are assumed to be

mutually independent. The mean SNR is given by

ρ = σ2
xσ

2
h/σ

2
n. (3)

A. Iterative Code-Aided Channel Estimation

Fig. 1 shows the structure of a receiver using iterative code-

aided channel estimation with the iteratively coupled compo-

nents, the channel estimator and the detection/decoding unit,

which uses a coherent metric. In [3], it is shown that such a

receiver structure can be systematically derived by expressing

the joint ML detection and MAP parameter estimation1
{

x̂, ĥ
}

= arg max
x∈Px,h

p (y|x,h) p (h) (5)

by a set of fixed point equations which can be solved itera-

tively. The set Px contains all possible transmit sequences. The

set of fixed point equations consists of an equation describing

the channel estimator and further fixed point equations for

all code bits describing detection/decoding, which due to the

processing of soft-information corresponds to a soft-demapper

and MAP-decoder. Solving the fixed point equation set yields

the following channel estimator (with iteration index (n))

ĥ(n) =

{

1

σ2
n

Γ(n)
s

+R−1
h

}−1
1

σ2
n

(

S̄(n)
)∗

y. (6)

The channel estimator uses the reliability information on

the symbols [x]l, i.e., the l-th element of x. Here S̄(n) =

diag([s̄
(n)
1 , . . . , s̄

(n)
2N+1]) contains the soft-symbols and Γ

(n)
s =

diag([(σ2
s,1)

(n), . . . , (σ2
s,2N+1)

(n)]) contains the expected

powers of the symbols, which for the l-th symbol are given by

s̄
(n)
l =

∑

xi∈Px

p
(

xi|y,λ
(n−1)
I , ĥ(n−1)

)

[xi]
∗
l (7)

(

σ2
s,l

)(n)
=

∑

xi∈Px

p
(

xi|y,λ
(n−1)
I , ĥ(n−1)

)

∣

∣[xi]l
∣

∣

2
. (8)

1Note that (5) is in general not equal to ML sequence detection, i.e.,

arg max
x∈Px

p(y|x) 6= arg max
x∈Px,h

p(y|x,h)p(h). (4)

However, the RHS is a high SNR approximation of the LHS. In the special
case of constant modulus symbols the LHS and the RHS of (4) are equal.

Here the asterisk denotes complex conjugation. Moreover,

p(xi|y,λ
(n−1)
I , ĥ(n−1)) gives the probability of the different

sequences xi based on the soft-information λ
(n−1)
I delivered

by the decoder. In the derivation of the fixed point equations

the independency of the individual code bits of all symbols [x]l
is assumed. This is achieved approximately by the ideal inter-

leaver in Fig. 1. Therefore, the soft-symbol s̄l depends only on
the bits which define the l-th symbol. This greatly simplifies

the computation of (7) and (8), i.e., of the reliability infor-

mation in a practical receiver. The assumption of independent

code bits has the consequence that the temporal correlation of

the channel estimation error is neglected for detection.

To understand the effect of the channel estimation error on

detection/decoding, we discuss exemplarily initial detection

using a solely pilot based channel estimation. The fact that

coherent detection is not optimal can be easily understood

when studying ML-detection, which for initial detection using

the pilot based channel estimate ĥ is given by

x̂ML = arg max
x∈Px

p(y|x, ĥ) with (9)

p(y|x, ĥ)=
exp(−(y−Xĥ)H

(

XReX
H+σ2

nI2N+1

)−1
(y−Xĥ))

π2N+1 det (XReXH + σ2
nI2N+1)

(10)

where I2N+1 is a square identity matrix of size (2N + 1).
The matrix Re = E

[

eeH
]

is the correlation matrix of the

estimation error. As the channel estimation is an interpolation

or, in further channel estimation iterations, a smoothing, the

estimation error is correlated over time and, thus, Re is not

diagonal. This makes the evaluation of (9) computationally

complex. Therefore, in practical receivers coherent detection

is performed, which means that the temporal correlation of the

channel estimation error is ignored, i.e., Re is substituted by

the diagonal matrix I2N+1 ⊙ Re, where ⊙ is the Hadamard

product. This corresponds to an approximation of p(y|x, ĥ)
in (10) by

p(y|x, ĥ) ≈

2N+1
∏

k=1

exp
(

− |yk−xkĥk|
2

|xk|2[Re]kk
+σ2

n

)

π(|xk|2 [Re]kk + σ2
n)

(11)

enabling symbol-wise detection. For a more detailed

discussion on this we refer to [1]. As the considered receiver

uses synchronized detection, in the present work we always

assume coherent detection based on the channel estimate ĥ(n).

As for the calculation of the soft-symbols independent code-

bits have been assumed, the set of fixed point equations derived

in [3] also corresponds to a coherent, i.e., symbol-wise, metric

for detection/demapping.

B. Modified Channel Estimation Unit

As stated before, we have not been able to derive an upper

bound on the achievable rate with the receiver described by

(6) and (11), but only for a modified version. The modified

receiver has a slightly different channel estimator, which for

the calculation of ĥk, i.e., the k-th entry of ĥ, does not use
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the corresponding observation yk. Thus (6) is substituted by

ĥ
(n)
k =

[

{

1

σ2
n

Γ(n)
s Uk +R−1

h

}−1
1

σ2
n

(

S̄(n)
)∗

Uky

]

k

, ∀k.

(12)

with [a]k the k-th element of the vector a. Uk is the identity

matrix except the k-th diagonal element is zero. Hence yk
and the soft-information on xk is not used for ĥk. The hereby

discarded amount of information is small for practical, i.e.,

small channel dynamics. Although not being the typically

studied code-aided channel estimator, it is also known from

literature [4].

III. UPPER BOUND ON THE ACHIEVABLE RATE WITH

ITERATIVE CODE-AIDED CHANNEL ESTIMATION

We derive an upper bound on the achievable rate with the

receiver based on iterative code-aided channel estimation as

described by (12) and (11). For the derivation, until stated

otherwise, we assume i.i.d. input symbols, i.e., we assume that

there are no pilot symbols. The mutual information between

the transmitter and receiver can be expressed by

I(y;x) = I(y0;x0|y\0,x\0)+I(y0;x\0|y\0)+I(x\0;y\0)
(13)

where we have used the chain rule for mutual information

and the independency of the transmit symbols. Without loss of

generality, we use the following mapping of the time instances

x = [x−N , . . . , x−1, x0, x1, . . . , xN ]T . Here, x\0 corresponds

to x without x0, and analogously for y\0.

The difference of the LHS of (13) and the last term at the

RHS of (13) is an upper bound on the mutual information rate

I ′(y;x). To prove this, we use the following inequality:

I(y;x)−I(y\0;x\0)
(a)
= I(y0;x|y\0)+I(y\0;x)−I(y\0;x\0)

(b)
= I(y0;x|y\0)

(c)

≥ I(y0;x|y
−1
−N )

(d)
= I(y0;x

0
−N |y−1

−N )

= h(y0|y
−1
−N )−h(y0|x

0
−N ,y−1

−N ) (14)

where (a) is the chain rule for mutual information and (b)

follows from the independency of the transmit symbols.

Inequality (c) holds as the knowledge on the observations yN
1

will increase the mutual information between y0 and x as they

contain information on h0. Here, e.g., y
−1
−N is a subvector of

y containing the symbols from time instant −N to −1. (d)
holds due to the independency of the transmit symbols.

The definition of the entropy rate for stationary ergodic

processes, see [5, Chapter 4.2], and (13) and (14), yields2

I ′(y;x)= lim
N→∞

I(y;x)

2N+1
= lim
N→∞

{

h(y0|y
−1
−N)−h(y0|x

0
−N ,y−1

−N)
}

≤ lim
N→∞

{

I(y0;x0|y\0,x\0) + I(y0;x\0|y\0)
}

. (16)

2Inequality (16) results from the fact that the time instant 0 is in the middle
of the transmit sequence. If it was the most recent symbol, the separation
would hold with equality, as in this case (14c) holds with equality, i.e.,

I′(y;x) = lim
N→∞

{

I(yN ;xN |y\N ,x\N ) + I(yN ;x\N |y\N )
}

. (15)

A. The Term I(y0;x0|y\0,x\0)

We want to obtain an insightful interpretation of the term

I(y0;x0|y\0,x\0) = E

[

log

(

p(y0|x0,y\0,x\0)

p(y0|y\0,x\0)

)]

. (17)

The probability density function (PDF) p(y0|x0,y\0,x\0) is

proper Gaussian and, thus, completely described by its mean

and its variance which are given by

E
[

y0|x0,y\0,x\0

]

= x0E
[

h0|y\0,x\0

]

= x0ĥ0 (18)

var
[

y0|x0,y\0,x\0

]

= E
[

|y0 − x0ĥ0|
2
∣

∣x0,y\0,x\0

]

= |x0|
2E

[

|h0−ĥ0|
2
∣

∣x\0

]

+σ2
n = |x0|

2σ2
eint

(x\0)+σ2
n (19)

where ĥ0 is the MMSE estimate of h0 which is linear, as the

problem is jointly proper Gaussian. Thus, the estimation error

is zero-mean proper Gaussian with variance σ2
eint
(x\0). Here

the index int denotes interpolation. ĥ0 is also zero-mean proper

Gaussian with variance σ2
ĥ
(x\0) = σ2

h − σ2
eint

(x\0). Note that

σ2
eint

(x\0) is independent of y\0 due to the principle of

orthogonality in MMSE estimation. The interpolation error

variance depends on the past and future transmit symbols

which is indicated by the notation σ2
eint

(x\0). Using (18) and

(19) we can use the following substitutions:

p(y0|x0,y\0,x\0) = p(y0|x0, ĥ0,x\0) (20)

p(y0|y\0,x\0) = p(y0|ĥ0,x\0) (21)

and, hence I(y0;x0|y\0,x\0) = I(y0;x0|ĥ0,x\0). (22)

Thus, the first term on the RHS of (16) is the mutual

information between channel input and output at the arbitrarily

chosen time instant 0 if an MMSE estimate ĥ0 is available

which is based on all past and future channel observations and

the knowledge of all transmit symbols except the current one.

We want to explain why I(x0; y0|ĥ0,x\0) is an upper

bound on the achievable rate with the iterative code-aided

channel estimation based receiver given by (12) and (11).

In this regard, consider that the only dependency between

the individual time instances is established by the channel

correlation. In case all past and all future transmit symbols are

known, corresponding to I(x0; y0|ĥ0,x\0), all information on

h0 given by the past and future channel output observation y\0

and the knowledge on x\0 is carried by ĥ0 and x\0. Note that

for the calculation of ĥ0, the observation y0 is not used, which

exactly corresponds to the channel estimator described by (12).

Furthermore, observe that for the case of perfect knowledge

of all past and all future transmit symbols the estimator in

(12) exactly corresponds to the MMSE interpolator ĥ0 in

I(x0; y0|ĥ0,x\0) with the estimation error variance σ2
eint

(x\0)

given in (19). This means that I(x0; y0|ĥ0,x\0) corresponds

to the mutual information at the arbitrarily chosen data symbol

time instant 0 if all past and all future transmit symbols

are perfectly known. Obviously, the assumption of perfect

knowledge of all past and all future transmit symbols results in

an upper bound to the actual achievable mutual information at

the arbitrarily chosen data symbol time instant 0, as this yields
the maximum amount of information on h0 given by y\0.
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Moreover, it is important to recognize that this argumenta-

tion only holds in case we assume a coherent, i.e., symbol-

wise, detection as described in Section II-A. If detection would

be performed over the whole sequence, evaluation of the

mutual information for a single time instant, as it is done

with I(x0; y0|ĥ0,x\0) would be meaningless. In addition, for

optimal ML sequence detection, the type of channel estimator

would be irrelevant for the achievable rate, as the detector has

the whole observation sequence y at its input, see [1].

Now, we can interpret the upper bound on the mutual

information rate in (16). It is the sum of two terms. The first

term on the RHS of (16), which is the main contribution,

is related to a coherent Rayleigh flat-fading channel, i.e., a

channel whose optimum detection metric can be evaluated

symbol-wise. In comparison to the genuine fading channel its

fading variance is modified due to the estimation error and

given by σ2
h−σ2

e . Its noise variance is given by |xk|
2σ2

e +σ2
n.

However, the fact that the effective noise variance depends on

the transmit symbol xk is a difference to a coherent fading

channel. The second term on the RHS of (16), I(y0;x\0|y\0),
can be viewed as a correction term accounting for the infor-

mation contained in the temporal correlation of the channel

estimation error, which cannot be exploited by the receiver

structure described by (12) and (11). Note that this term partly

arises due to the upper-bounding in (16), see also footnote 3.

B. The Term I(y0;x\0|y\0)

The only relation between the individual symbol time in-

stances is given by the fading correlation. Thus, using the

chain rule for mutual information, we rewrite I(y0;x\0|y\0)
such that its relation to the fading weight h0 becomes explicit

I(y0;x\0|y\0) = I(h0, y0;x\0|y\0)− I(h0;x\0|y)

= I(y0;x\0|h0,y\0) + I(h0;x\0|y\0)− I(h0;x\0|y)

(a)
= I(h0;x\0|y\0)− I(h0;x\0|y) (23)

where (a) follows from the fact that y0 is independent of

y\0 and of x\0 while conditioning on h0. The RHS of (23)

indicates that I(y0;x\0|y\0) is related to the additional infor-

mation on h0 contained in y0 while knowing y\0. The fact that

this additional information on h0 contained in y0 cannot be

exploited by the given receiver structure, i.e., using the channel

estimator in (12) in combination with the symbol-wise detec-

tion metric in (11), is supported by the following observation.

First, consider that the observation y0 is also used at the input

of the detection unit. Nevertheless, with the given structure,

where y0 is not used for channel estimation, the information

corresponding to I(y0;x\0|y\0) cannot be exploited. There-

for, consider that detection works symbol-wise, and that y0
contains additional information on h0, which can only be

exploited when using it in combination with y\0 and x\0, indi-

cated by the conditioning on y\0 in I(y0;x\0|y\0). However,
this is not possible for the detector due to its symbol-wise met-

ric. This supports the statement at the end of Section III-A that

I(y0;x\0|y\0) is a correction term to I(y0;x0|y\0,x\0) on

the RHS of (16) accounting for the fact that the detector cannot

exploit the temporal correlation of the channel estimation error.

The observation that I(y0;x\0|y\0) accounts for the tempo-

ral correlation of the channel estimation error is also supported

by the fact that in case of an uncorrelated channel, i.e.,

E [hkh
∗
l ] = 0, ∀k 6= l, the term I(y0;x\0|y\0) becomes zero.

C. An Upper Bound on I(x0; y0|ĥ0,x\0)

To upper-bound I(x0; y0|ĥ0,x\0) and, thus, the achievable

rate with the iterative code-aided channel estimation based

receiver described by (12) and (11), we use the expression

I(y0;x0|ĥ0,x\0) = h(y0|ĥ0,x\0)− h(y0|ĥ0,x). (24)

1) Calculation of h(y0|ĥ0,x): Based on ĥ0 the channel

output y0 can be written as

y0 = x0h0 + n0 = x0

(

ĥ0 + e0

)

+ n0 (25)

where e0 is the estimation error, which is zero-mean proper

Gaussian. Thus, y0 conditioned on ĥ0 and x is proper

Gaussian. Hence, h(y0|ĥ0,x) is completely described by the

conditional variance of y0, which is given in (19), and we get

h(y0|ĥ0,x) = Ex

[

log
(

πe
(

σ2
n+σ2

eint
(x\0)|x0|

2
))]

. (26)

2) Upper Bound on h(y0|ĥ0,x\0): In contrast to the prior

case, y0 conditioned on ĥ0 and x\0 is not proper Gaussian.

Nevertheless, its entropy is upper-bounded by the entropy of

a proper Gaussian random variable with the same variance,

which is given by σ2
x(|ĥ0|

2 + σ2
eint

(x\0)) + σ2
n. Thus, we get

h(y0|ĥ0,x\0)≤Ex\0

[

E
ĥ0

[

log
(

πe
(

σ2
n+σ2

xσ
2
eint
(x\0)+σ2

x|ĥ0|
2
))]]

=Ex\0

[
∫ ∞

0

log
(

πe
(

σ2
n+σ2

xσ
2
eint
(x\0)+σ2

x

(

σ2
h−σ2

eint
(x\0)

)

u
))

e−udu

]

(27)

using that ĥ0 is zero-mean proper Gaussian with variance

σ2
h − σ2

eint
(x\0).

3) Derivation of an Upper Bound on I(x0; y0|ĥ0,x\0):
With (24), (26), and (27), we get for a zero-mean proper

Gaussian data symbol x0 with variance σ2
x the upper bound

I(x0; y0|ĥ0,x\0) ≤ Ex\0

[
∫ ∞

0

[

− log

(

1+ρ
σ2
eint
(x\0)

σ2
h

u

)

+log

(

1+ρ
σ2
eint
(x\0)

σ2
h

+ρ

(

1−
σ2
eint

(x\0)

σ2
h

)

u

)]

e−udu

]

(28)

with the mean SNR ρ in (3). This upper bound depends on

the interpolation error variance σ2
eint

(x\0), which itself is a

random variable. Its distribution depends on the distribution of

the past and future transmit symbols. It can be expressed by

σ2
eint

(x\0)=σ2
h − rHh,int

(

Rh\0 + σ2
nZ

−1
\0

)−1

rh,int=σ2
eint

(z\0)

with Rh\0 = E[h\0h
H
\0], rh,int = [rh(−N), . . . , rh(−1),

rh(1), . . . , rh(N)]T , and Z\0 = XH
\0X\0 is a diagonal matrix

containing the powers of the past and future transmit symbols.

The vector z\0 contains the diagonal elements of Z\0.

If it would be possible to show that the argument of the ex-

pectation operation on the RHS of (28) is concave with respect

to each individual element of the diagonal of Z\0, considering
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i.i.d. data symbols, and using Jensen’s inequality, this would

mean that the RHS of (28) is maximized in case σ2
eint

(z\0) is
calculated under the assumption that all past and future trans-

mit symbols are constant modulus symbols with power σ2
x.

Unfortunately, we have not been able to prove this concavity.

Nevertheless, for small channel dynamics it is reasonable to

approximate the channel interpolation error variance σ2
eint

(z\0)
by the channel interpolation error variance calculated under

the assumption that all past and all future transmit symbols

are constant modulus symbols. In this regard, consider that in

case of small channel dynamics, the calculation of the channel

estimate corresponds to a weighted averaging of many channel

output observations, where in the limit of an asymptotically

small channel dynamic all observations are equally weighted.

Furthermore, it can be shown that in case of a constant channel

the distribution of the past and future input symbols is irrele-

vant, only their average power has an influence on σ2
eint

(z\0).
Thus, we are able to approximate σ2

eint
(z\0) by assuming that

all past and all future transmit symbols are constant modulus

symbols (CM) with power σ2
x. The advantage of this specific

assumption on the distribution of the past and future transmit

symbols, i.e., CM symbols with power σ2
x, is that, when

additionally considering an infinite long observation horizon in

the past and in the future, we are able to give a closed form ex-

pression for the interpolation error variance, which is given by

σ2
eint,CM,∞

=
σ2
h

ρ





{

∫ 1

2

− 1

2

[

ρ

σ2
h

Sh(f) + 1

]−1

df

}−1

− 1



. (29)

The assumption on constant modulus transmit symbols is

in contrast to the assumption on i.i.d. zero-mean proper

Gaussian input symbols. However, we use the assumption on

constant modulus input symbols only in the context of the

channel interpolation error variance σ2
eint

(z\0) for bounding.
Finally, with (28) and (29) we have found an approximate

upper bound on the achievable rate with the iterative code-

aided channel estimation based receiver described by (12)

and (11), and i.i.d. zero-mean proper Gaussian data-symbols.

Notice that this bound holds without any assumption on the

use of pilot symbols. If we additionally account for the rate

loss due to the deterministic pilot symbols for the pilot spacing

L, we get the following approximate upper bound3

I ′(x0; y0|ĥ0,x\0).
L−1

L
RHS(28)

∣

∣

σ2
eint

(x\0)=σ2
eint,CM,∞

. (30)

D. Numerical Evaluation

In Fig. 2 the approximate upper bound on the achievable

rate with the receiver based on iterative code-aided channel

estimation (using (12)) in (30) is compared to a lower bound

on the achievable rate with joint processing of pilot and data

symbols given in [1, (25)]. For both bounds the pilot spacing

is chosen such that the fading process is sampled with Nyquist

rate, i.e., L = ⌊1/(2fd)⌋. We assume a rectangular PSD of the

fading process Sh(f)=σ2
h/(2fd) for |f |≤fd and 0 otherwise.

3The upper bound on the achievable rate can also be applied when using

pilot symbols, as it is based on I(x0; y0|ĥ0,x\0), which implicitly means
that all past and future transmit symbols are known.
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Fig. 2. Comparison of the approximate upper bound (30) on the achievable
rate with the iterative code-aided channel estimation based receiver described
by (12) and (11) with the lower bound on the achievable data rate with joint
processing given in [1, (25)] (L = ⌊1/(2fd)⌋ for both) and with bounds
on the achievable rate with synchronized detection and solely pilot based
channel estimation (separate processing) given in [6] for i.i.d. zero-mean
proper Gaussian data symbols; additionally, the capacity in case of perfect
channel state information (CSI) is shown; rectangular PSD Sh(f)

The lower bound given in [1, (25)] is an actual lower bound

on the achievable rate with joint processing, i.e., with the

optimal receiver. In contrast, we have shown that the iterative

code-aided channel estimation based receiver in the present

paper is not able to exploit the complete mutual information

between the transmitter and the receiver. Nevertheless the

upper bound on the achievable rate for the receiver based on

iterative code-aided channel estimation described by (12) and

(11) is larger than the lower bound for joint processing.

Additionally, these bounds are compared to bounds on the

achievable rate with synchronized detection and a solely pilot

based channel estimation, named separate processing in Fig. 2,

given in [6]. As the upper and lower bound on the achievable

rate with separate processing are relatively tight, we choose

the pilot spacing in this case such that the lower bound for

separate processing in [6, (22)] is maximized. The gap between

the bounds on the achievable rate with separate processing and

the bounds for joint processing/iterative code-aided channel

estimation gives an indication on the possible gain by using

code-aided channel estimation in comparison to a solely pilot

based channel estimation.
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