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ABSTRACT
In this paper, we consider a multihop wireless sensor network
(WSN) with multiple relay nodes for each hop where the amplify-
and-forward (AF) scheme is employed. We present a strategy to
jointly design the linear receiver and the power allocation param-
eters via an alternating optimization approach that maximizes the
sum-rate of the WSN. We derive constrained maximum sum-rate
(MSR) expressions along with an algorithm to compute the lin-
ear receiver and the power allocation parameters with the optimal
complex amplification coefficients for each relay node. Computer
simulations show good performance of our proposed methods in
terms of sum-rate compared to the method with equal power alloca-
tion.

Index Terms— Maximum sum-rate (MSR), power allocation,
multihop, wireless sensor networks (WSNs)

1. INTRODUCTION

Recently, there has been a growing research interest in wireless sen-
sor networks (WSNs) as their unique features allow a wide range of
applications in the areas of defence, environment, health and home
[1]. They are usually composed of a large number of densely de-
ployed sensing devices which can transmit their data to the desired
user through multihop relays [2]. Low complexity and high energy
efficiency are the most important design characteristics of commu-
nication protocols [3] and physical layer techniques employed for
WSNs. The performance and capacity of WSNs can be significantly
enhanced through exploitation of spatial diversity with cooperation
between the nodes [2]. In a cooperative WSN, nodes relay signals to
each other in order to propagate redundant copies of the same signals
to the destination nodes. Among the existing relaying schemes, the
amplify-and-forward (AF) and the decode-and-forward (DF) are the
most popular approaches [4].

Due to limitations in sensor node power, computational capac-
ity and memory [1], some power allocation methods have been pro-
posed for WSNs to obtain the best possible SNR or best possible
quality of service (QoS) [5] at the destinations. The majority of the
previous literature considers a source and destination pair, with one
or more randomly placed relay nodes. These relay nodes are usually
placed with uniform distribution [6], equal distance [7], or in line [8]
with the source and destination. The reason for these simple con-
siderations is that they can simplify complex problems and obtain
closed-form solutions. A single relay AF system using mean chan-
nel gain channel state information (CSI) is analyzed in [9], where the
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outage probability is the criterion used for optimization. For DF sys-
tems, a near-optimal power allocation strategy called the Fixed-Sum-
Power with Equal-Ratio (FSP-ER) scheme based on partial CSI has
been developed in [6]. This near-optimal scheme allocates one half
of the total power to the source node and splits the remaining half
equally among selected relay nodes. A node is selected for relay if
its mean channel gain to the destination is above a threshold. Simula-
tions show that this scheme significantly outperforms existing power
allocation schemes. One is the ’Constant-Power scheme’ where all
nodes serve as relay nodes and all nodes including the source node
and relay nodes transmit with the same power. The other is the ’Best-
Select scheme’ where only the node with the largest mean channel
gain to the destination is chosen as the relay node.

In this paper, we consider a general multihop wireless sensor
network (WSN) where the AF relaying scheme is employed. Our
strategy is to jointly design the linear maximum sum-rate (MSR)
receiver (w) and the power allocation parameter (a) that contains
the optimal complex amplification coefficients for each relay node
via an alternating optimization approach. It can be considered as
a constrained optimization problem where the objective function is
the sum-rate (SR) and the constraint is a bound on the power levels
among the relay nodes. Then the constrained MSR solutions for the
linear receiver and the power allocation parameter can be derived.
The proposed strategy and algorithm are not only applicable to sim-
ple 2-hop WSNs but also to general multihop WSNs with multi relay
nodes and destination nodes. Another novelty is that we make use
of the Generalized Rayleigh Quotient [10] to solve the optimization
problem in an alternating fashion.

This paper is organized as follows. Section 2 describes the mul-
tihop WSN system model. Section 3 develops the joint MSR re-
ceiver design and power allocation strategy. Section 4 presents the
proposed alternating optimization algorithm to maximize the sum
rate. Section 5 presents and discusses the simulation results, while
Section 6 provides some concluding remarks.

2. SYSTEM MODEL

Consider a general m-hop WSN with multiple parallel relay nodes
for each hop, as shown in Fig. 1. The WSN consists of N0 source
nodes, Nm destination nodes and Nr relay nodes which are sep-
arated into m − 1 groups: N1,N2, ... ,Nm−1. We will focus on a
time division scheme with perfect synchronization, for which all sig-
nals are transmitted and received in separate time slots. The sources
first broadcast the N0 × 1 signal vector s to the first group of re-
lay nodes. We consider an amplify-and-forward (AF) cooperation
protocol. Each group of relay nodes receives the signal, amplifies



and rebroadcasts them to the next group of relay nodes (or the des-
tination nodes). In practice, we need to consider the constraints on
the transmission policy. For example, each transmitting node would
transmit during only one phase. In our WSN system, we assume that
each group of relay nodes transmits the signal to the nearest group
of relay nodes (or destination nodes) directly.
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Fig. 1. m-hop WSN with N0 sources, Nm destinations and Nr relays.

Let Hs denote the N1 ×N0 channel matrix between the source
nodes and the first group of relay nodes, Hd denote the Nm×Nm−1

channel matrix between the (m − 1)th group of relay nodes and
destination nodes, and Hi−1,i denote the Ni ×Ni−1 channel matrix
between two groups of relay nodes as described by

Hs =


hs,1

hs,2

...
hs,N1

 , Hd =


hm−1,1

hm−1,2

...
hm−1,Nm

 , Hi−1,i =


hi−1,1

hi−1,2

...
hi−1,Ni

 ,

(1)
where hs,j = [hs,j,1, hs,j,2, ..., hs,j,N0 ] for j = 1, 2, ..., N1

are row vectors that module the channels between source nodes
and the jth relay of the first group of relay nodes, hm−1,j =
[hm−1,j,1, hm−1,j,2, ..., hm−1,j,Nm−1 ] for j = 1, 2, ..., Nm is a
row vector between the (m − 1)th group of relay nodes and the jth
destination node and hi−1,j = [hi−1,j,1, hi−1,j,2, ..., hi−1,j,Ni−1 ]
for j = 1, 2, ..., Ni is a row vector between the (i − 1)th group of
relay nodes and the jth relay of the ith group of relay nodes. The
received signal at the ith group of relay nodes (xi) for each phase
can be expressed as:

Phase 1:

x1 = Hss + v1, (2)

y1 = F1x1, (3)

Phase 2:
x2 = H1,2A1y1 + v2, (4)

y2 = F2x2, (5)

...
Phase i: (i = 3, 4, ...,m− 1)

xi = Hi−1,iAi−1yi−1 + vi, (6)

yi = Fixi, (7)

At the destination nodes, the received signal can be expressed as

d = HdAm−1ym−1 + vd, (8)

where v is a zero-mean circularly symmetric complex additive white
Gaussian noise (AWGN) vector with covariance matrix σ2I. Ai =
diag{ai,1, ai,2, ..., ai,Ni} is a diagonal matrix whose elements rep-
resent the amplification coefficient of each relay of the ith group. Fi

denotes the normalization matrix which can normalize the power of
the received signal for each relay of the ith group of relays.(See the
appendix to find the expression of Fi.) Note that the property of the
matrix vector multiplication Ay = Ya will be used in the next sec-
tion, where Y is the diagonal matrix form of the vector y and a is the
vector form of the diagonal matrix A. At the receiver, a linear detec-
tor is considered where the optimal filter and optimal amplification
coefficients are calculated. The optimal amplification coefficients
are transmitted to the relays via the feedback channel.

3. PROPOSED JOINT MAXIMUM SUM-RATE DESIGN OF
THE RECEIVER AND THE POWER ALLOCATION

In this section, we detail the proposed joint MSR design of the re-
ceiver and the power allocation. By substituting (2)-(7) into (8), we
get

d =C0,m−1s + C1,m−1v1 + C2,m−1v2

+ ...+ Cm−1,m−1vm−1 + vd

=C0,m−1s +
m−1∑
i=1

Ci,m−1vi + vd

(9)

where

Ci,j =

{ ∏j
k=i Bk, if i 6 j,

I, if i > j.
(10)

and
B0 = Hs (11)

Bi = Hi,i+1AiFi for i = 1, 2, ..., m− 2 (12)

Bm−1 = HdAm−1Fm−1. (13)

We focus on a system with one source node for simplicity. There-
fore, the expression of the sum-rate (SR) for our m-hop WSN is
expressed as

SR =
1

m
log2

[
1 +

σ2
s

σ2
n

wHC0,m−1CH
0,m−1w

wH(
∑m

i=1 Ci,m−1CH
i,m−1)w

]
, (14)

where w is the linear receiver, and (·)H denotes the complex-
conjugate (Hermitian) transpose. Let

ϕ = C0,m−1CH
0,m−1 (15)

and

Z =

m∑
i=1

Ci,m−1CH
i,m−1. (16)

The expression for the sum-rate can be written as

SR =
1

m
log2

(
1 +

σ2
s

σ2
n

wHϕw
wHZw

)
=

1

m
log2(1 + ax) (17)

where

a =
σ2
s

σ2
n

(18)



and

x =
wHϕw
wHZw

. (19)

Since 1
m

log2(1 + ax) is a monotonically increasing function of x
(a > 0), the problem of maximizing the sum-rate is equivalent to
maximizing x. In this section, we consider the case where the total
power of the relay nodes in each group is limited to some value PT,i

(local constraint). The proposed method can be considered as the
following optimization problem:

[wopt, a1,opt, ..., am−1,opt] = arg max
w,a1,...,am−1

wHϕw
wHZw

,

subject to Pi = PT,i, i = 1, 2, ...,m− 1

(20)

where Pi as defined above is the transmitted power of the ith group
of relays, and Pi = Ni+1aH

i ai. We can notice that the expression
wHϕw
wHZw in (20) is the Generalized Rayleigh Quotient, therefore the
optimal solution of our maximization problem can be solved: wopt is
any eigenvector corresponding to the dominant eigenvalue of Z−1ϕ.

In order to obtain the optimal power allocation vector aopt, we
rewrite wHϕw

wHZw and the expression is given by

wHϕw
wHZw

=
aH
i Miai

aH
i Piai + wH

i Tiwi
, for i = 1, 2, ..., m− 1, (21)

where

Mi =diag{wH
i Ci+1,m−1Hi,i+1Fi}C0,i−1CH

0,i−1×

diag{FH
i HH

i,i+1CH
i+1,m−1wi},

(22)

Pi =diag{wH
i Ci+1,m−1Hi,i+1Fi}(

i∑
k=1

Ck,i−1CH
k,i−1)×

diag{FH
i HH

i,i+1CH
i+1,m−1wi},

(23)

and

Ti =

m∑
k=i+1

Ck,m−1CH
k,m−1. (24)

Since the multiplication of any constant value and an eigenvector is
still an eigenvector of the matrix, we can express the receive filter as

wi =
wopt√

wH
optTiwopt

. (25)

Therefore, we obtain

wH
i Tiwi = 1 =

Ni+1aH
i ai

PT,i
. (26)

By substituting (26) into (21), we obtain

wHϕw
wHZw

=
aH
i Miai

aH
i Niai

for i = 1, 2, ..., m− 1. (27)

where
Ni = Pi +

Ni+1

PT,i
I (28)

Likewise, we can notice that the expression aHMia
aHi Niai

in (27) is the
Generalized Rayleigh Quotient, therefore the optimal solution of our
maximization problem can be solved: ai,opt is any eigenvector cor-
responding to the dominant eigenvalue of N−1

i Mi, and satisfying
aH
i,optai,opt =

PT,i

Ni+1
. The solutions of wopt and ai,opt depend on

each other. Therefore it is necessary to iterate them with an initial
value of ai (i = 1, 2, ...,m− 1) to obtain the optimum solutions.

4. PROPOSED ALTERNATING MAXIMIZATION
ALGORITHM

In this section, we devise our proposed alternating maximization al-
gorithm which computes the linear receive filter and the power allo-
cation parameters that maximize the sum-rate of the WSN. In partic-
ular, we employ two methods to calculate the dominant eigenvectors.
The first one is the QR algorithm [12] which calculates all the eigen-
values and eigenvectors of a matrix. We can choose the dominant
eigenvector among them. The second one is the power method [12]
which only calculates the dominant eigenvector of a matrix. There-
fore, the computational complexity can be reduced. Table 1 shows a
summary of our proposed algorithm used for the simulations.

Table 1. Summary of the Proposed Algorithm
Initialize the algorithm by setting

Ai =
√

PT,i

NiNi+1
I for i = 1, 2, ...,m− 1

For each iteration:
1. Compute ϕ and Z in (15) and (16).
2. Use the QR algorithm or the power method to compute the

dominant eigenvector of Z−1ϕ, denoted as wopt.
3. For i = 1, 2, ...,m− 1

a) Compute Mi and Ni in (22) and (28).
b) Use the QR algorithm or the power method to compute the

dominant eigenvector of N−1
i Mi, denoted as ai.

c) To ensure the local power constraint aH
i,optai,opt =

PT,i

Ni+1
,

compute ai,opt =

√
PT,i

Ni+1aHi ai
ai.

In terms of computational complexity, for each single itera-
tion, the QR algorithm has a complexity O(n3) whereas the power
method has a lower complexity O(n2). In terms of convergence, the
QR algorithm has a quadratic convergence rate whereas the power
method has a linear convergence rate. The global convergence
of alternating optimization algorithm with two parameter vectors
has been recently established in [13]. The global convergence of
our proposed alternating sum-rate maximization algorithm can be
proven by modifying the procedure in [13], which will be reported
elsewhere.

5. SIMULATIONS

In this section, we numerically study the sum-rate performance of
our proposed joint MSR design of the receiver and power allocation
methods and compare them with the equal power allocation method
[6] which allocates the same power level equally for all links from
the relay nodes. We consider a 3-hop (m=3) wireless sensor net-
work. The number of source nodes (N0), two groups of relay nodes
(N1, N2) and destination nodes (N3) are 1, 4, 4, 2 respectively. We
consider an AF cooperation protocol. The quasi-static fading chan-
nel (block fading channel) is considered in our simulations whose el-
ements are Rayleigh random variables (with zero mean and unit vari-
ance) and assumed to be invariant during the transmission of each
packet. In our simulations, the channel is assumed to be known at the
destination nodes. For channel estimation algorithms for WSNs and
other low-complexity parameter estimation algorithms, one can refer
to [14] and [15]. During each phase, the sources transmit the QPSK
modulated packets with 1500 symbols. The noise at the destination
nodes is modeled as circularly symmetric complex Gaussian random
variables with zero mean. When a perfect (error free) feedback chan-
nel between destination nodes and relay nodes is assumed to trans-
mit the amplification coefficients, it can be seen from Fig. 2 that our



proposed method can achieve better sum-rate performance than the
equal power allocation method. When using the power method to
calculate the dominant eigenvector, we can get a very similar result
to the QR algorithm. In practice, the feedback channel can not be
error free. In order to study the impact of feedback channel errors on
the performance, we employ the binary symmetric channel (BSC) as
the model for the feedback channel and quantize each complex am-
plification coefficient to an 8-bit binary value (4 bits for the real part,
4 bits for the imaginary part). Vector quantization methods [16] can
also be employed for increased spectral efficiency. The error prob-
ability (Pe) of BSC is fixed at 10−3. The dashed curves in Fig. 2
show the performance degradation compared with the performance
when using a perfect feedback channel. To show the performance
tendency of the BSC for other values of Pe, we fix the SNR at 10 dB
and choose Pe ranging from 0 to 10−2. The performance curves are
shown in Fig. 3, which illustrates the sum-rate performance versus
Pe of our two proposed methods. It can be seen that along with the
increase in Pe, their performance becomes worse.
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Fig. 2. Sum-rate performance versus SNR of our proposed joint maximum
sum-rate design of the receiver and power allocation strategy for a 3-hop
WSN, compared with the equal power allocation method.
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Fig. 3. Sum-rate performance versus Pe of our proposed joint strategy when
employing BSC as the model for the feedback channel.

6. CONCLUSIONS

A joint MSR receiver design and power allocation strategy has been
proposed for general multihop WSNs. It has been shown that our
proposed strategy achieves a significantly better performance than
the equal power allocation method. Possible extensions to this work

may include the study of the complexity and the requirements for the
feedback channel.

7. APPENDIX

Here, we derive the expression of Fi which is shown in Section 2.

Fi = diag{E(|xi,1|2), E(|xi,2|2), ..., E(|xi,Ni
|2)}−

1
2

where

E(|xi,j |2 =


σ2
s |hs,j |2 + σ2

n, for i = 1,
hi−1,jAi−1E(yi−1yHi−1)A

H
i−1hH

i−1,j + σ2
n,

for i = 2, 3, ...,m.

E(yiy
H
i ) =


Fi(σ

2
sHsHH

s + σ2
nI)FH

i , for i = 1,
Fi[Hi−1,iAi−1E(yi−1yHi−1)A

H
i−1HH

i−1,i + σ2
nI]FH

i
for i = 2, 3, ...,m.
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