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Abstract—Bit-interleaved coded modulation (BICM) is a prac-
tical approach for reliable communication over the AWGN
channel in the bandwidth limited regime. For a signal point
constellation with 2m points, BICM labels the signal points with
bit strings of length m and then treats these m bits separately
both at the transmitter and the receiver. BICM capacity is defined
as the maximum of a certain achievable rate. Maximization
has to be done over the probability mass functions (pmf) of
the bits. This is a non-convex optimization problem. So far,
the optimal bit pmfs were determined via exhaustive search,
which is of exponential complexity in m. In this work, an
algorithm called bit-alternating convex concave method (BACM)
is developed. This algorithm calculates BICM capacity with
a complexity that scales approximately as m3. The algorithm
iteratively applies convex optimization techniques. BACM is used
to calculate BICM capacity of 4, 8, 16, 32, and 64-PAM in AWGN.
For PAM constellations with more than 8 points, the presented
values are the first results known in the literature.

I. INTRODUCTION

Bit-interleaved coded modulation (BICM) [1]–[3] is a de
facto standard for wireless communications, and it is used in
e.g., HSPA, IEEE 802.11a/g/n, and the latest DVB standards
(DVB-T2/S2/C2).

In BICM, signal points from a finite constellation are
labeled with bit strings. E.g., for 16-PAM, the signal points
are labeled with log2 16 = 4 bits each. The bits in the labels
are then treated independently both at the transmitter and
the receiver. According to [4], to determine BICM capacity,
a certain achievable rate has to be maximized over the bit
probability mass functions (pmf). We will make this statement
precise later in this work. This maximization is a non-convex
optimization problem [5, Fig. 1]. So far, BICM capacity has
been calculated using exhaustive search only. For the AWGN
channel, results are presented for 8-PAM in [6, Fig. 3] and
[5, Fig. 1] and for 16-QAM in [4, Fig. 2]. The complexity of
exhaustive search is exponential in the number of bits in the
labels, and calculating BICM capacity becomes an intractable
problem for large constellations. This motivates the present
work.
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Our approach is as follows. We start by considering a
discrete memoryless channel (DMC) operated by a BICM
transceiver. To calculate BICM capacity, we develop a
new algorithm called bit alternating convex-concave method
(BACM), which combines two optimization techniques: first,
maximization is done sequentially over one bit pmf at a time,
and second, the maximization over one bit pmf is done using
the convex-concave procedure [7]. We then show how an
average power constraint can be taken into account by BACM.
This allows us to use BACM to calculate BICM capacity of
PAM constellations in AWGN. We provide numerical results
for 4 and 8-PAM and, for the first time in the literature, for 16,
32, and 64-PAM. The results show that BICM capacity is close
to AWGN capacity and significantly larger than what can be
achieved by operating BICM with uniform bit pmfs. Finally,
we argue that the complexity of BACM scales approximately
as m3 and logarithmically in the precision with which the
optimal bit pmfs are calculated. An implementation of BACM
in Matlab is available on our website [8].

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a DMC with 2m input symbols X = {1, . . . , 2m}
and n output symbols Y = {1, . . . , n}. The channel is
specified by a matrix of transition probabilities H ∈ Rn×2m ,
where R denotes the set of real numbers. The input of the
channel is the random variable X , which takes values in X
according to the pmf p. The channel output is the random
variable Y , which takes values in Y according to the pmf
r = Hp.

A. DMC Capacity

We denote the mutual information between X and Y either
by I(X;Y ) or by I(p). The DMC capacity is [9, Eq. (7.1)]

C = max
p

I(p). (1)

The maximization is a convex optimization problem [10,
Prob. 4.57] and it can be solved by the Blahut-Arimoto
algorithm [11], [12] or by a software package such as CVX
[13].
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B. BICM Capacity

In BICM, the input symbols are represented by their m-bit
binary expansion, i.e,

1↔
m bits︷ ︸︸ ︷

0 · · ·00
2↔ 0 · · ·01

...
2m ↔ 1 · · ·11.

(2)

Each bit position of the channel input is treated independently
both at the transmitter and the receiver, see [3], [4] for details.
This leads to the following constraint at the transmitter:

• [4, Eq. (8)]: The bits Bi in positions i of the channel
input are stochastically independent, i.e., the channel
input pmf p is given by

p = p1 ⊗ · · · ⊗ pm (3)

where pi is the pmf of Bi and where ⊗ denotes the
Kronecker product, see [14, Def. 4.2.1].

According to [15, Theorem 1], the following sum of mutual
informations is an achievable rate for a BICM transceiver:

Ibicm(p1, . . . ,pm) :=

m∑
i=1

I(Bi;Y ). (4)

Following [4, Eq. (19)], the “BICM capacity” Cbicm is now
given by

Cbicm = max
p1,...,pm

Ibicm(p1, . . . ,pm). (5)

Unfortunately, the maximization is a non-convex problem.
This will become clear in Sec. III.

C. Problem Statement

So far, BICM capacity has been calculated in literature via
exhaustive search [4]–[6]. To determine the optimal bit pmfs
with a precision of ±d, Ibicm has to be evaluated ( 1d )

m times,
so the complexity of this approach increases exponentially
in the number of bit positions m and polynomially in the
precision d. The objective of this work is to develop an
algorithm that efficiently (compared to exhaustive search)
calculates BICM capacity.

III. PRELIMINARY: Ibicm AS A FUNCTION OF pppi

The goal of this section is to characterize the objective Ibicm
as a function of one bit pmf pi. By this characterization, it
will become clear that Ibicm is a non-convex function, and
furthermore, we will see how we can maximize over pi. To
this end, we pick an arbitrary bit position i and assume that
for each j 6= i, Bj is distributed according to a fixed pmf and
that Bi is distributed according to a pmf that we interpret as
a variable. To emphasize this distinction, we denote the pmfs

for j 6= i by p̂j and the pmf of Bi by pi. The function Ibicm
can now be written as

Ibicm(p1, . . . ,pm) =

m∑
j=1

[H(Y )−H(Y |Bj)] (6)

= mH(Y )−H(Y |Bi)−
∑
j 6=i

H(Y |Bj). (7)

We see that there are three kinds of terms that we need to
express as functions of pi: the output entropy H(Y ), the
conditional entropy H(Y |Bi), and the conditional entropy
H(Y |Bj) for j 6= i.

A. Output entropy as a function of pppi

Define

qi
0 := p̂1 ⊗ · · · ⊗ p̂i−1 ⊗

(
1 0

)T ⊗ p̂i+1 ⊗ · · · ⊗ p̂m (8)

qi
1 := p̂1 ⊗ · · · ⊗ p̂i−1 ⊗

(
0 1

)T ⊗ p̂i+1 ⊗ · · · ⊗ p̂m. (9)

The channel seen by the ith bit is now given by

Hi = H
(
qi
0 qi

1

)
∈ Rn×2. (10)

The output pmf can now be written as

r = Hp = Hipi. (11)

Thus, the output entropy as a function of pi is given by

H(Y ) = −
n∑

k=1

rk log rk (12)

= −
n∑

k=1

(r)k log(r)k (13)

= −
n∑

k=1

(Hipi)k log(H
ipi)k (14)

where (x)k denotes the kth entry of the vector x. Since
−x log x is concave in x, we conclude that the output entropy
is concave in pi.

B. Conditional entropy H(Y |Bi) as a function of pppi

The output entropy conditioned on the ith bit can be written
as

H(Y |Bi) = −
1∑

b=0

pib

n∑
k=1

(Hi)kb log(H
i)kb (15)

where we index the rows of Hi by 1, . . . , k and the columns
by the binary values 0,1, e.g., (Hi)10 is the entry of Hi

in the first row and first column. We conclude from (15) that
H(Y |Bi) [and thereby −H(Y |Bi), which contributes to the
objective function] is linear in pi.
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C. Conditional entropy H(Y |Bj) as a function of pppi

Define

qji
00 := p̂1 ⊗ · · · ⊗ p̂j−1 ⊗

(
1 0

)T ⊗ p̂j+1 ⊗ · · ·

⊗ p̂i−1 ⊗
(
1 0

)T ⊗ p̂i+1 ⊗ · · · ⊗ p̂m (16)

qji
01 := p̂1 ⊗ · · · ⊗ p̂j−1 ⊗

(
1 0

)T ⊗ p̂j+1 ⊗ · · ·

⊗ p̂i−1 ⊗
(
0 1

)T ⊗ p̂i+1 ⊗ · · · ⊗ p̂m (17)

qji
10 := p̂1 ⊗ · · · ⊗ p̂j−1 ⊗

(
0 1

)T ⊗ p̂j+1 ⊗ · · ·

⊗ p̂i−1 ⊗
(
1 0

)T ⊗ p̂i+1 ⊗ · · · ⊗ p̂m (18)

qji
11 := p̂1 ⊗ · · · ⊗ p̂j−1 ⊗

(
0 1

)T ⊗ p̂j+1 ⊗ · · ·

⊗ p̂i−1 ⊗
(
0 1

)T ⊗ p̂i+1 ⊗ · · · ⊗ p̂m. (19)

Now, the channel seen by the jth and the ith bit is given by

Hji = H
(
qji
00 qji

01 qji
10 qji

11

)
∈ Rn×4. (20)

The channel seen by the jth bit can be written as

Hj = Hji

(
pi 0
0 pi

)
. (21)

Thus, the output entropy conditioned on the jth is

H(Y |Bj) = −
1∑

b=0

pjb

n∑
k=1

(Hj)kb log(H
j)kb (22)

= −
1∑

b=0

pjb

n∑
k=1

[
Hji

(
pi 0
0 pi

)]
kb

log

[
Hji

(
pi 0
0 pi

)]
kb

.

(23)

Since −x log x is concave in x, we conclude that H(Y |Bj) is
concave in pi. As a consequence, the term −H(Y |Bj), which
contributes to the objective function, is convex in pi.

D. Summary

The objective function as a function of pi can be charac-
terized as follows:

Ibicm(p̂1, . . . , p̂i−1,pi, p̂i+1, . . . , p̂m)

= mH(Y )︸ ︷︷ ︸
concave in pi

−H(Y |Bi)︸ ︷︷ ︸
linear in pi

+
∑
j 6=i

[−H(Y |Bj)]︸ ︷︷ ︸
convex in pi

. (24)

As a sum of convex and concave terms, Ibicm is a non-convex
function. However, as we detail in the next section, the convex-
concave procedure [7] can be applied to maximize Ibicm over
pi.

IV. BACM ALGORITHM

The objective Ibicm is a non-convex function of the pmfs
p1, . . . ,pm with potentially more than one local maximum.
Thus, finding an efficient algorithm that provably finds the
global maximum is difficult. Therefore, we resort to the
simpler problem of finding a local maximum. With a good
starting point, the global maximum is nevertheless found by
such an approach. To find local maxima, efficient methods are
available. For the problem at hand, we choose the combination
of two methods.

Algorithm 1.(BACM)

p̂1, . . . , p̂m ← starting point
repeat bit alternation, outer loop

for i = 1, . . . ,m bit alternation, inner loop
maximize Ibicm over pi see Alg. 2
update p̂i with the maximizing pi

end for
until convergence

Algorithm 2.(convex-concave procedure)

calculate Hi and Hji, j 6= i
pi ← p̂i

repeat
1. p̂i ← pi

2. pi ← argmax
pi

f i(pi, p̂i) see Subsec. IV-B

until convergence

• We maximize over one bit pmf pi at a time and then
cycle through the i = 1, . . . ,m until convergence. This
approach goes under the name alternating maximization.

• To maximize over one bit pmf pi, we iteratively approx-
imate Ibicm by a lower bound that is concave in pi and
maximize this concave lower bound. After convergence,
the maximum of the concave lower bound is also a local
maximum of Ibicm as a function of pi. This technique is
known as the convex-concave procedure [7].

We call this approach the bit-alternating convex-concave
method (BACM). The alternating maximization over the bit
pmfs is displayed in Alg. 1. The maximization over one bit
pmf is detailed next.

A. Concave Lower Bound

As the objective is the sum of concave and convex functions,
it cannot be maximized directly. However, the convex-concave
procedure as defined in [16, slide 26] can be applied. Define
the function hj(pi) as the negative of the right-hand side
of (23). This function is convex in pi. The convex-concave
procedure is an iterative method and works as follows. Denote
by p̂i the result for pi in the previous step. Then, in the current
step, approximate hj(pi) by its first order Taylor expansion in
p̂i, i.e., by

ĥj(pi, p̂i) := hj(p̂i) +∇hj(p̂i)T (pi − p̂i). (25)

Note that since hj(pi) is convex in pi and the approximation
ĥj(pi, p̂i) is linear in pi, the approximation ĥj(pi, p̂i) lower
bounds hj(pi) for any value of pi. By a calculation similar
to [17, (7.61)–(7.63)] it can be shown that ĥj is given by

ĥj(pi, p̂i) =
1∑

b=0

pjb

n∑
k=1

[
Hji

(
pi 0
0 pi

)]
kb

log

[
Hji

(
p̂i 0
0 p̂i

)]
kb

.

(26)
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Putting all together, we have a concave lower bound of Ibicm
as a function of pi given by

f i(pi, p̂i) := mH(Y )−H(Y |Bi) +
∑
j 6=i

ĥj(pi, p̂i) (27)

=−m
n∑

k=1

(Hipi)k log(H
ipi)k+

1∑
b=0

pib

n∑
k=1

(Hi)kb log(H
i)kb

+
∑
j 6=i

1∑
b=0

pjb

n∑
k=1

[
Hji

(
pi 0
0 pi

)]
kb

log

[
Hji

(
p̂i 0
0 p̂i

)]
kb

.

(28)

Since f i is a concave function of pi, it can be maximized
efficiently over pi, as we will explain in detail in the next
subsection. We iteratively update p̂i with the value of pi that
maximizes f i(pi, p̂i). Algorithm 2 illustrates this procedure.
After convergence, the pmf pi locally maximizes Ibicm over
pi given the fixed pmfs p̂j for j 6= i.

B. Solving the Inner Optimization Problem

We need to solve the optimization problem

maximize
pmf pi

f i(pi, p̂i). (29)

Any pmf pi can for some pi0 ∈ [0, 1] be written as pi =[
pi
0

1−pi
0

]
. We define

f i0(p
i
0, p̂

i) = f i(
[

pi
0

1−pi
0

]
, p̂i). (30)

We can now formulate our optimization problem as

maximize
pi
0∈[0,1]

f i0(p
i
0, p̂

i). (31)

Note that the problems (29) and (31) are equivalent and
furthermore, by [10, Sec. 3.2.2], f i0 is a concave function of
p0. Thus, our problem reduces to finding the maximum of a
concave function with a scalar argument. This can be done as
follows.

The first derivative of H(Y ), H(Y |Bi), and
ĥj(
[

pi
0

1−pi
0

]
, p̂i), j 6= i with respect to pi0 are respectively

given by

∂H(Y )

∂pi0
= −

n∑
k=1

{[
Hi
(
1 −1

)T ]
k
log(Hi

[
pi
0

1−pi
0

]
)k

+
[
Hi
(
1 −1

)T ]
k

}
(32)

∂H(Y |Bi)

∂pi0
=

n∑
k=1

[
(Hi)k0 log(H

i)k0 − (Hi)k1 log(H
i)k1

]
(33)

∂ĥj(
[

pi
0

1−pi
0

]
, p̂i)

∂pi0
=

1∑
b=0

pjb

n∑
k=1

[
(Hji)kb0 − (Hji)kb1

]
· log(Hj)kb (34)

where we index the rows of Hji by k = 1, . . . , n and the
columns by the binary expansion bjbi = 00,01,10,11.

E.g., (Hji)110 denotes the entry of Hji in the 1st row and
the 3rd column. For notational convenience, we write

df i0(p0, p̂
i) :=

∂f i0(p
i
0, p̂

i)

∂pi0
. (35)

Putting the expressions above together according to (27),
we get the first derivative of f i0. Since f i0 is concave, df i0
is monotonically decreasing in pi0. Consequently, we can
maximize f i0 over pi0 ∈ [0, 1] as follows.

argmax
pi
0

f i0(p
i
0, p̂

i) =


0 df i0(0

+, p̂i) < 0

1 df i0(1
−, p̂i) > 0

pi0 : df i0(p
i
0, p̂

i) = 0 otherwise.
(36)

In our implementation [8], we use the bisection method to find
pi0 in the third case. See Sec. VII for details.

V. ADDING AN AVERAGE COST CONSTRAINT

We discuss how BACM can be used to calculate BICM
capacity when the bit pmfs are subject to an average cost
constraint. Suppose we have a cost vector w ∈ R2m

>0 , where
R>0 denotes the set of positive real numbers. Then, the
symbol costs seen by the ith bit are given by

wi = [wT
(
qi
0 qi

1

)
]T . (37)

The average cost can now be included by adding a weighted
version of the average cost wiTpi to f i, i.e., the inner
optimization problem in Alg. 2 now becomes

maximize
pi

[f i(pi, p̂i)− λwiTpi]. (38)

This simply adds another linear term and our algorithm works
in exactly the same way as before. Denote by pi∗ the optimal
pmfs found by this modified version of BACM for some λ.
Consider the resulting cost

E = wTp∗ (39)

where p∗ = p1∗ ⊗ · · · ⊗ pm∗. Then, it can be shown that the
bit pmfs p1∗, . . . ,pm∗ solve the optimization problem

maximize
p1,...,pm

Ibicm(p1, . . . ,pm)

subject to wT (p1 ⊗ · · · ⊗ pm) ≤ E.
(40)

VI. APPLICATION TO PAM IN AWGN

We use BACM to calculate BICM capacity of PAM con-
stellations in AWGN. To calculate the BICM capacity of
PAM constellations in AWGN, optimization has to be done
over the labeling of the signal points, the scaling of the
constellation, and the bit pmfs, see [6, Eq. (40)] for details.
Here, we fix the labeling to the binary reflected Gray code
[6, Sec. II-B] and optimize over constellation scaling and bit
pmfs. To be able to use BACM, we discretize the channel
output into 200 equally spaced points. For each scaling, the
discretized AWGN channel with M = 2m constellation points
at the input can thus be represented by a DMC specified
by a transition matrix H ∈ R200×M . For this DMC, we
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Fig. 1. Results for 4, 8, 16, 32, and 64-PAM in AWGN. In the horizontal
direction, SNR is displayed in dB. In the vertical direction, we show the
gap in percent to the AWGN capacity C(snr) = 0.5 log(1 + snr). E.g.,
for BICM capacity, the gap is calculated as 100 · (1 − C(snr)

Cbicm(snr)
). For

each constellation size and a corresponding target SNR, CM capacity, BICM
capacity, and uniform BICM capacity are displayed. For BICM capacity, we
display several values since we could adjust the effective SNR only via the
weighting factor λ, see Sec. V.

use the method proposed in Sec. V to calculate the BICM
capacity. To achieve a target SNR, we iteratively adapt the
weighting λ of the average power in (38). We repeat this
for different constellation scalings and choose the scaling
that yields the largest value for Ibicm. This largest value is
the BICM capacity and we denote it by Cbicm(snr). Results
for 4, 8, 16, 32, and 64-PAM are displayed in Fig. 1. For
comparison, coded modulation (CM) capacity [6, Eq. (28)]
of the corresponding constellation and Ibicm for uniform bit
pmfs are displayed. The values for CM capacity were obtained
via CVX [13]. The BICM capacity significantly outperforms
uniform BICM and gets close to CM capacity. We calculated
the optimal bit pmfs with a precision of d = 10−5.

VII. COMPLEXITY OF BACM

We start by analyzing the complexity of the inner optimiza-
tion problem. To cover the first two cases in (36), we need to
evaluate df i0 two times. To find the pi0 in the third case we use
the bisection method starting with the upper bound u = 1 and
the lower bound ` = 0, and we terminate when u − ` ≤ 2d.
After termination, we assign pi0 = u+`

2 . Thus, we calculate pi0
with a precision of ±d. According to [10, p. 146], the number
of times we need to evaluate df i0 until termination is given by⌈

log2
u− `
2d

⌉
=

⌈
log2

1− 0

2d

⌉
=

⌈
log2

1

2d

⌉
. (41)

When evaluating df i, by (27), we need to evaluate ∂ĥj/∂pi0
for each j 6= i, which results in a number of m − 1 or
roughly m evaluations. Overall, the number of evaluations
needed for solving the inner optimization problem once is
roughly m log2

1
2d . The sizes of the matrices involved in (28)

are invariant under m, i.e., Hji ∈ Rn×4 and Hi ∈ Rn×2.

Therefore, the number of iterations until convergence in Alg. 2
should be approximately invariant under m and we denote it
by a constant K. For our AWGN simulations, this number was
around K = 3, independent of m. The complexity of maximiz-
ing Ibicm over one bit pmf is thus approximately Km log2

1
2d .

This maximization has to be done for i = 1, . . . ,m, i.e., m
times, which adds another factor of m to the complexity. This
procedure has to be repeated L times until convergence in
the outer loop of Alg. 1. This number depends on m. For
the AWGN simulations, we observed for m = 2, 3, 4, 5, 6,
respectively, the values

2.00 3.27 3.90 4.24 4.31. (42)

The average for each m is taken separately over all values
that were observed when executing BACM. This value in-
creases slightly with m. To have a rough bound on com-
plexity, we assume that L increases at most linearly with m,
which is consistent with the observed data (42). All together,
we have a complexity that is approximately of the order
LKm2 log2

1
2d ≤ Km3 log2

1
2d . In summary, BACM scales

as m3 and logarithmically in the precision d.
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