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Abstract—In the present paper, Interference Alignment by
propagation delay is applied to a delay-based X- channel and
a delay-based K- user interference channel. The key ingredient
in our approach is the cyclic permutation property of the delay-
based channel model that uses cyclic right-shifts in polynomials.

Based on this cyclic channel model, we derive necessary
conditions on the propagation delay matrix between users and
provide Cyclic Interference Alignment schemes achieving the
upper bounds on X - networks as given by Cadambe et al.

By further assuming that the propagation delays are propor-
tional to the Euclidean distances, a delay matrix with integer-
valued propagation delays can be derived. It enables us to
investigate the placement of user-nodes in Euclidean space such
that Cyclic Interference Alignment is achieved in two dimensions.

I. INTRODUCTION

Considering the challenging problem to mitigate mutual
interference in wireless multi-user communication systems,
Interference Alignment (IA) has emerged in [1], [2] as an
innovative concept to efficiently exploit the degrees of freedom
(DoF) of the signal space in order to achieve high data rates.

The main idea of IA is to overlap interference of multiple
users as if each receiver would only perceive a single virtual
interferer. Hence, the data rates are not limited by the number
of interfering users. An extensive overview on the diversity of
different schemes for IA is given in the survey [3].

IA by propagation delay has originally been introduced in
the seminal work [1]. However, it is only presented as a simple
toy example to illustrate the elementary ideas behind the novel
technique. A comparable toy example for an X- channel is also
provided in [4]. Apart from those basic examples, a closer look
at IA by propagation delay is taken in [5] and to some extend
in [6]–[8].

In [5], [9]–[11], the authors further assume that propagation
delay is proportional to the Euclidean distance between trans-
mitters and receivers and derive node placement schemes, i. e.,
to answer the question of how to position transmitters and
receivers in spatial dimensions to achieve IA by propagation
delay.

An evaluation of the performance of IA by propagation
delay for users placed completely at random is conducted
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in [12]. An opportunity for practical applications in satellite
and submarine networks is mentioned in [12]–[14].

Furthermore, the authors of [11] consider IA by propagation
delay and node placement for cognitive radio systems.

Contributions. In this work, we introduce a system model
for IA by propagation delay that operates with polynomials
that describe cyclic permutations. The mathematical frame-
work is inspired by cyclic codes.

Our main goal is to formally generalize IA by propagation
delay on delay-based interference channels as treated in [1],
[4], [5], [9], [10]. We intend to keep an intuitive representation
of the considered model as in the original examples.

To ensure decodability in the presence of interference,
we derive separability conditions and a sufficient Cyclic IA
scheme for the special cases of delay-based X- channels and
K- user interference channels. We derive an upper bound on
the DoF for delay-based interference channels with an arbi-
trary number of messages and users in analogy to [4, Thm. 1].

Furthermore, we present a solution for node placement of
four users in 2-dimensional Euclidean space to realize the
discrete delay-based channel matrices of an X- channel.

Organization. In Section II, we introduce the cyclic re-
presentation for a delay-based model of the X- channel. The
Cyclic IA scheme for the X- channel is investigated in Sec-
tion III. A resulting node placement in two dimensions is
elaborated in Section IV. Cyclic IA on the K- user interference
channel is investigated in Section V. An upper bound on the
DoF is provided in Section VI. We discuss further insights on
Cyclic IA in Section VII and give a conclusion in Section VIII.

Notation. Matrices are denoted by boldface capital letters
and vectors by boldface lower-cases. Determinants are denoted
by det(⋅) and transposed matrices by (⋅)T. In is the n × n
identity matrix, 1m×n the m × n-matrix of ones, and 0n the
n-dimensional zero vector. A univariate polynomial of de-
gree n in the indeterminate x is denoted by p(x) = ∑n−1

i=0 p
[i]xi

with coefficients p[i].

II. SYSTEM MODEL

The instructive toy example given in [4] considers an
X- channel with a specific set of discrete propagation delays.
However, the given example does not elaborate how to adjust
the scheme to a channel with arbitrary discrete delays. We
intend to formally specify the delay-based channel model and
the corresponding IA scheme in the following.



Fig. 1. The delay-based X- channel with messages W11, W12, W21 and
W22 between Tx1, Tx2, Rx1 and Rx2 and delays d11, d12, d21 and d22
of delay matrix D.

An X- channel describes a wireless channel with K = 4
users, i. e., 2 transmitters and 2 receivers, as depicted in Fig. 1.
We denote a message between a transmitter Txi and a receiver
Rxj , i, j ∈ K ∶= {1,2}, by Wji. An X- channel is physically
equivalent to an interference channel albeit with a number of
M = 4 independent messages W11,W21,W12 and W22 instead
of only M = 2 independent messages W11 and W22.

The channel access at each Txi and Rxj is partitioned into
n ∈ N equally sized time-slots, each normalized to length one.
A transmitter Txi can allocate one message Wji per time-slot.

Propagation delays between any Txi and Rxj are assumed
to be static and non-negative integer multiples of one time-slot.
These discrete delays could be established through a proper
node placement as we will discuss in Section IV.

Like in conventional orthogonal multiple-access schemes,
the channel access repeats itself after n time-slots and new
messages are transmitted each period. Firstly, there is a tran-
sient settling time determined by the longest propagation delay
in the channel. Then, the channel access is stationary over
a period of n consecutive time-slots. Within the stationary
period, delayed messages are cyclically right-shifted.

We model such a communication system with cyclic right-
shifts by polynomials in x modulo xn − 1. Single time-
slots in the period of n time-slots are addressed by offsets
x0, x1, . . . , xn−1, from 0 (no offset) to n− 1 (maximal offset).
The propagation delay between a pair (Rxj ,Txi) is denoted
by dji ∈ D = {xk ∣k ∈ N}. The matrix of propagation delays is
assumed to be fully known to all users and defined by:

D = (
d11 d12

d21 d22
) . (1)

Let a message (coefficient) W be transmitted at offset xu and
delayed by v time-slots. The resulting delayed message is com-
puted by Wxu+v mod(xn − 1) for a period of n time-slots.

Encoding Scheme: The codeword sent from Tx1 is encoded
into the polynomial v1(x) by the encoding function e1 carry-
ing the two messages W11,W21. Accordingly, codeword v2(x)
at Tx2 is encoded by e2 carrying W12,W22:

e1 ∶ (W11,W21)→ v1(x),

e2 ∶ (W12,W22)→ v2(x).

The (cyclic) transfer function is described by the superpo-
sition of input polynomials in vector v = (v1(x), v2(x)) s. t.
the vector of received polynomials r = (r1(x), r2(x)) yields:

rT ≡DvT mod(xn − 1). (2)

It is easily observed that undesired messages cause (cyclic)
interference at both receivers.

x0 x1 x2

Tx1 ∶ v1(x) W11 0 W21

Tx2 ∶ v2(x) 0 W12 W22

Rx1 ∶ r1(x) W21+W22 W11 W12

Rx2 ∶ r2(x) W11+W12 W22 W21

Fig. 2. Cyclic IA is performed on the delay-based X- channel in a
period of n = 3 time-slots. The following delays d11 = x

1, d12 = x1,
d21 = x

3 and d22 = x
2 are assumed. The transmitted polynomials are

chosen as v1(x) = W11 + x
2W21 and v2(x) = xW12 + x

2W22.
The received polynomials yield r1(x) = (W21+W22)+xW11+x

2W12 and
r2(x) = (W11+W12)+xW22+x

2W21. The M = 4 desired messages are
decoded by taking r[1]1 = Ŵ11, r

[2]
1 = Ŵ12, r

[2]
2 = Ŵ21 and r[1]2 = Ŵ22.

Decoding Scheme: The received polynomials are decoded
to obtain an estimate of the dedicated messages Ŵji. The
received polynomial r1(x) is decoded by f1 and r2(x) by f2:

f1 ∶ r1(x)→ (Ŵ11, Ŵ12),

f2 ∶ r2(x)→ (Ŵ21, Ŵ22).

An example of a transmission scheme within one (station-
ary) period of n = 3 time-slots is shown in Fig. 2.

Note that in the linear decoding process the cyclic delays are
unrolled over time. The decoder must also take the transient
settling time at the beginning into account.

Assuming i.i.d. zero mean unit variance Gaussian noise at
the receivers and an average power constraint P per message
within each time-slot, a single interference-free link between
Txi and Rxj has a capacity of log(P ) bits per time-slot at
high SNR. The degrees of freedom (DoF) metric is defined in
[1], [4] as the pre-log of the achieved sum-capacity CΣ(P ):

DoF = lim
P→∞

CΣ(P )

log(P )
.

In the delay-based model, the achieved DoF are the number
of messages M received interference-free per n time-slots:

DoF = lim
P→∞

M
n
log(P )

log(P )
=
M

n
. (3)

III. CYCLIC INTERFERENCE ALIGNMENT

For the delay-based X- channel, the task of Cyclic IA is
to convey and decode M = 4 dedicated messages W11, W12,
W21 and W22 interference-free in a period of n time-slots. The
scheme is optimal in the sense of Cyclic IA if n is minimal
and still feasible.

We call interfering messages to be aligned if at least two
of these are received in the same time-slot at an undesired
receiver. In order to align the messages W22 and W21 in v1(x)
and v2(x), they must overlap in the same time-slot at Rx1

but remain distinct in different time-slots at Rx2. To align the
messages W11 and W12 in v1(x) and v2(x), they must overlap
at Rx2 but remain distinct at Rx1, accordingly. An example
of such an alignment is shown in Fig. 2. We choose the
following polynomials for transmission using the parameters
p11, p12, p21, p22 ∈ N0:

v1(x) =W11x
p11 +W21x

p21 , (4)
v2(x) =W12x

p12 +W22x
p22 . (5)



Then by (2), the received polynomials at Rx1 and Rx2 yield:

r1(x) ≡ d11W11x
p11 + d12W12x

p12+

d11W21x
p21 + d12W22x

p22 mod(xn − 1),

r2(x) ≡ d21W21x
p21 + d22W22x

p22+

d21W11x
p11 + d22W12x

p12 mod(xn − 1).

Both messages dedicated for Rxj must be received in sepa-
rate time-slots. We term this as the multiple-access interference
condition. With the indices j ∈ K, i ≠ l ∈ K, it holds:

djix
pji ≢ djlx

pjl mod(xn − 1). (6)

The two messages from Txi dedicated for different receivers
Rxj ,Rxk must also be separate. We term this as the intra-user
interference condition with j ≠ k ∈ K, i ∈ K:

xpji ≢ xpki mod(xn − 1). (7)

The messages desired at the respective receiver must be
separate from both interfering messages. Hence, the inter-user
interference condition holds with j ≠ k ∈ K, i ≠ l ∈ K:

djix
pji ≢ djlx

pkl mod(xn − 1). (8)

We count ten of such separability conditions in total for all
valid combinations of indices in K.

For perfect Cyclic IA, all interfering messages must overlap
in one time-slot. In the case of the X- channel, intra- and inter-
user interference is aligned to a single time-slot at each Rxj :

djix
pki ≡ djlx

pkl mod(xn − 1), (9)

with j ≠ k ∈ K and i ≠ l ∈ K.
We remark that (9) substituted into (8) yields (7):

djix
pji ≢ djlx

pkl mod(xn − 1)

⇒ djix
pji ≢ djix

pki mod(xn − 1)

⇒ xpji ≢ xpki mod(xn − 1),

with the indices j ≠ k ∈ K and i ≠ l ∈ K. Hence, we can
neglect the condition (8) if both (7) and (9) hold.

Theorem 1. A perfect Cyclic IA scheme for the delay-based
X- channel satisfying the separability conditions exists, if and
only if both det(D) ≢ 0 mod(xn − 1) and n > 2 hold. Then,
Cyclic IA achieves 4

3
DoF on the delay-based X- channel.

Proof:
(a) Necessity of det(D) ≢ 0 mod(xn − 1), n ∈ N:

Assuming det(D) ≡ 0 mod(xn − 1) yields:

det(D) ≡ 0 mod(xn − 1)

⇒ d11d22 − d21d12 ≡ 0 mod(xn − 1)

⇒ d11d22 ≡ d21d12 mod(xn − 1)

⇒ djidkl ≡ dkidjl mod(xn − 1), (10)

with the indices j ≠ k ∈ K and i ≠ l ∈ K. Including (10)
into condition (9) yields:

djix
pki ≡ djlx

pkl mod(xn − 1)

⇒ dkix
pki ≡ dklx

pkl mod(xn − 1).

Relabeling the indices j ↔ k provides:

⇒ djix
pji ≡ djlx

pjl mod(xn − 1),

and contradicts (6) for any n ∈ N.
(b) Necessity of n > 2 time-slots:

Assume det(D) ≢ 0 mod(xn−1) holds. We consider the
right-hand sides of (6) and (7).

(6) ∶ djixpji ≢ djlxpjl mod(xn − 1),

(7) ∶ djixpji ≢ djixpki mod(xn − 1).

These must also be pair-wise distinct, since we can relabel
the indices i↔ l in (11) to obtain (8):

djlx
pjl ≢ djix

pki mod(xn − 1) (11)
⇔ djix

pji ≢ djlx
pkl mod(xn − 1).

Thus, there is no solution to satisfy all three conditions
on djixpji with only n = 1 or n = 2 time-slots.

(c) Sufficiency of n = 3 and det(D) ≢ 0 mod(xn − 1) to
achieve 4

3
DoF:

From the perfect IA condition (9), the following holds:

xp12 ≡ d−1
22d21x

p11 mod(x3
− 1), (12)

xp21 ≡ d−1
11d12x

p22 mod(x3
− 1). (13)

Furthermore, the condition (7) must hold:

xp11 ≢ xp21 mod(x3
− 1), (14)

xp12 ≢ xp22 mod(x3
− 1). (15)

The insertion of (12) and (13) into condition (14) yields:

xp22 ≢ d22d11d
−1
21d

−1
12x

p12 mod(x3
− 1), (16)

Due to (10), the following holds:

d−1
12d

−1
21d22d11 ≢ 1 mod(x3

− 1).

W.l.o.g., we can fix p11 and compute p12 using (12). We
can determine a solution for p22 from (15) and (16) only
if n > 2. For n = 3 the solution of p22 is unique. The
remaining parameter p21 is derived using (15).
The validity of condition (6) is yet to check. Inserting
(12) and (13) into (6) for all cases provides:

xp11 ≢ d12d21d
−1
22d

−1
11x

p11 mod(x3
− 1),

xp21 ≢ d22d11d
−1
12d

−1
21x

p21 mod(x3
− 1).

Both conditions are satisfied by prerequisite, since
det(D) ≠ 0 mod(x3 − 1) holds. Altogether, there is a
solution for Cyclic IA on the X- channel with n = 3 time-
slots and M = 4 messages that satisfies the separability
conditions and achieves 4

3
DoF1. The result also achieves

the upper bound as we will show in Section VI, Lemma 4.

Our result also includes the example of the delay-based
X- channel considered in [4].

1The example solution for Cyclic IA provided in the table of Fig. 2 uses
p11 = 0, p12 = 1, p21 = 2, p22 = 2 and n = 3 and achieves 4

3
DoF.



Fig. 3. A one-dimensional solution for the node placement of a given matrix
C with δ31 = 2, δ32 = 1, δ41 = 4 and δ42 = 1 is shown. The numbered boxes
indicate the users. The parameters of the dissimilarity matrix ∆ are b = 2
and a = 3. Cyclic IA is possible since condition (19) is fulfilled.

Lemma 2. If det(D) ≡ 0 mod(xn − 1) holds, Cyclic IA
achieves only 1 DoF on the delay-based X- channel.

Proof: Theorem 1 (a) yields that no two interference
signals can be aligned without violating the condition (6), if
det(D) ≡ 0 mod(xn − 1) holds. Thus, each message must be
received in an own dedicated time-slot, i. e., n ≥ 4. Conform
to orthogonal time-sharing, only 1 DoF is achievable.

In the following section, we design a set of delay-based
channels that can utilize the scheme in Theorem 1 to perfectly
align interference by propagation delay.

IV. NODE PLACEMENT IN EUCLIDEAN SPACE

For the sake of simplicity, we assume that propagation
delay is proportional and normalized to the Euclidean distance
between each user. This assumption also occurs in [5], [9],
[10]. We neglect further wireless effects as, e. g., multi-path
propagation, path loss and fading and consider a line-of-sight
environment.

For notational reasons, we define the following indexing for
the 4 users Tx1,Tx2,Rx1 and Rx2 in the X- channel:

Tx1 = 1, Tx2 = 2, Rx1 = 3, Rx2 = 4. (17)

The Euclidean distances between each user are denoted by
a symmetric dissimilarity matrix ∆ = (δji)1≤j,i≤4 with the en-
tries δji ∈ N>0 and a zero diagonal. We specify the relationship
between the propagation delay and the Euclidean distance by
dji = x

δji . The dissimilarity matrix can be decomposed into
four blocks:

∆ = (
B CT

C A
) . (18)

Thus, the elements of matrix C = (δji)3≤j≤4,1≤i≤2 cor-
respond to the delay offset exponents of the elements in
matrix D defined in Section II.

Note that the condition det(D) ≢ 0 mod(x3 − 1) from
Theorem 1 leads to an equivalent condition for matrix C:

δ31 + δ42 ≢ δ41 + δ32 (mod 3). (19)

Matrix B = (δji)1≤j,i≤2 only describes the distances be-
tween the transmitters, and matrix A = (δji)3≤j,i≤4 only the
distances between the receivers, respectively. We may set
the variables δ12 = δ21 = b ∈ R+ and δ34 = δ43 = a ∈ R+ due to
symmetry and δii = 0, for i = 1, . . . ,4, and obtain:

B = b(12×2 − I2),

A = a(12×2 − I2).

Fig. 4. A two-dimensional node placement solution is shown for a given
matrix C with δ31 = 1, δ32 = 2, δ41 = 2 and δ42 = 1. The condition (19) is
fulfilled, parameter b satisfies (20) and a satisfies (21).

Node placement terms a procedure of how to place user-
nodes in Euclidean space enabling (Cyclic) IA by propagation
delay. Here, we consider the problem as an Euclidean embed-
ding of the dissimilarity matrix ∆ according to [9], [10] with
fixed entries in the matrix C and variable entries a, b ∈ R+ in
B,A, respectively. To derive the sought distances b and a, the
receivers j and k, j ≠ k ∈ {3,4}, must be positioned s. t. all
the given distances in C are fulfilled.

The objective of Euclidean embedding is to find a solution
of placement vectors xi ∈ Rm for all users i = 1, . . . ,4
within the lowest number of dimensions m yet satisfying the
fixed distances in ∆. In our case it is desirable to find a
practically most relevant solution in only m ≤ 3 dimensions
for a spatial arrangement. Fig. 3 depicts an exemplary solution
of node placement for Cyclic IA by delay on the X- channel
in one dimension. Another exemplary node placement in two
dimensions is depicted in Fig. 4.

There is a feasible solution in two dimensions, if both trans-
mitters satisfy all of the following (four) triangle inequalities
with j, k ∈ {3,4} and i, l ∈ {1,2}:

0 < ∥δji − δjl∥2 ≤ b ≤ ∥δji∥2 + ∥δjl∥2, (20)
0 < ∥δji − δki∥2 ≤ a ≤ ∥δji∥2 + ∥δki∥2. (21)

These inequalities must be non-zero because neither the trans-
mitters Tx1, Tx2 nor the receivers Rx3, Rx4 may overlap at
the same point in the Euclidean space. If the lower and upper
bounds support a solution in b, a ∈ R, then a 2-dimensional
node placement exists.

The solution is derived from elementary geometry: W. l. o. g.
we can position Txi on a reference point 02. To position Txl,
i ≠ l, some b satisfying condition (20) can be fixed on a straight
line that originates in point 02. Then the valid positions for
receivers Rxj and Rxk, j ≠ k, can be determined easily. Valid
positions for Rxj are the intersecting points of the two circles
Oji and Ojl with j ≠ k ∈ {3,4}, i ≠ l ∈ {1,2}:

Oji ∶ x2 + y2 = δ2
ji,

Ojl ∶ (x − b)
2 + y2 = δ2

jl.

The valid positions for Rxk yield accordingly:

Oki ∶ x2 + y2 = δ2
ki,

Okl ∶ (x − b)
2 + y2 = δ2

kl.



Condition (21) is satisfied by construction, due to the fact that
the circles Oji, Oki are concentric around node i and the
circles Ojl, Okl concentric around node l.

The resulting placement vectors are computed as:

xi = (
0

0
) , xl = (

b

0
) ,

xj =
⎛

⎝

δ2j1−δ
2
j2+b

2

2b

±
√
αj

⎞

⎠
, xk =

⎛

⎝

δ2k1−δ
2
k2+b

2

2b

±
√
αk

⎞

⎠
,

with the indices j ≠ k ∈ {3,4} and i ≠ l ∈ {1,2}, and the
discriminants α3 = δ

2
31 −

δ231−δ
2
32+b

2

2b
, α4 = δ

2
41 −

δ241−δ
2
42+b

2

2b
.

If both discriminants α3, α4 are greater than zero, then a
two-dimensional solution exists. If α3 = α4 = 0, the solution is
one-dimensional. A negative discriminant states that there is no
feasible solution for node placement. The remaining distance a
between the receivers is computed by:

a = ∥xj −xk∥2.

with j ≠ k ∈ {3,4}. Moreover, such a positioning of users is
invariant to rotation and translation.

A dual solution is to fix receiver Rxj at point 02 and Rxk
at point xk = (a,0)T satisfying condition (21) and finding
the intersection points of the corresponding two circle pairs
around Rxj and Rxk.

An extension to m = 3 dimensions would include an ad-
ditional z-coordinate and the computation of two intersection
circles for the four intersecting spheres. The 3-dimensional
solution is also a rotational body around the connecting
line δ21 of the 2-dimensional solution and again invariant to
rotation and translation.

V. THE K-USER INTERFERENCE CHANNEL

In the following, an analogously defined delay-based inter-
ference channel with K user-pairs is considered. The model
is depicted in Fig. 5. We assume that there is a number of
M = K independent messages Wi dedicated to be conveyed
pair-wise from transmitter Txi to receiver Rxi with indices
i ∈ K ∶= {1, . . . ,K}.

The delay matrix for this channel is defined between the
transmitters Txi and the receivers Rxj as D = (dji)1≤i,j≤K .
The delays dji are in D = {xk ∣k ∈ N0} as in the case of the
X- channel. This channel is also fully-connected as in [1].

The polynomial vi(x) contains the message Wi for the
dedicated Rxi with the parameters pi ∈ N0 and i ∈ K:

vi(x) =Wix
pi . (22)

The input vector of the transmitted polynomials vi(x) is
denoted by v = (v1(x), . . . , vK(x)). The transfer function of
the delay-based interference channel yields the received vector
r = (r1(x), . . . , rK(x)) and is analogous to (2):

rT =DvT mod(xn − 1).

The received polynomials of Rxj with indices j ∈ K are:

rj(x) =∑
K

i=1
djiWix

pi mod(xn − 1).

Fig. 5. The fully-connected delay-based interference channel with K user-
pairs and M =K messages W1, . . . ,WK , s. t. there is one message between
each pair of transmitters Tx1, . . . ,TxK and receivers Rx1, . . . ,RxK for
propagation delay matrix D.

The set of K encoding functions ei and K decoding functions
fi is defined for each i ∈ K as:

ei ∶ Wi → vi(x),

fi ∶ ri(x) → Ŵi.

The task of Cyclic IA on the given K- user interference
channel is to convey and decode the M = K dedicated
messages W1, . . . ,WK interference-free in a period of n time-
slots. The scheme is optimal in the sense of Cyclic IA if the
number of time-slots n is minimal and still feasible.

In contrast to the delay-based X- channel, neither a
multiple-access interference nor an intra-user interference
condition is needed for the K- user interference channel, since
there is only one message Wi per user-pair i anyway. Thus,
only the following inter-user interference conditions are to be
considered for j ≠ i ∈ K:

djjx
pj ≢ djix

pi mod(xn − 1). (23)

We count K(K − 1) of these separability conditions in total
for K users, i. e., a single receiver perceives K − 1 inter-user
interference signals from undesired transmitters.

In the given case of K user-pairs, perfect IA means to align
all K−1 interfering signals received at Rxj into a single time-
slot for all j ∈ K:

djix
pi ≡ djkx

pk mod(xn − 1), (24)

with pair-wise distinct i, j, k ∈ K.
For notational convenience, we define 2×2 submatrices ofD

denoted asDj,k,i if the following structure is satisfied for pair-
wise distinct indices i, j, k ∈ K:

Dj,k,i = (
djj dji
dkj dki

) . (25)

Cyclic IA on the K- user interference channel can achieve K
2

DoF if all the conditions of the following Theorem 3 hold.

Theorem 3. A perfect Cyclic IA scheme for the K- user
interference channel exists, if the three conditions:

● det(Dj,k,i) ≢ 0 mod(xn − 1),
● djidkjdik ≡ dijdjkdki mod(xn − 1),
● and n ≥ 2,

hold with pair-wise distinct i, j, k ∈ K. Then, Cyclic IA
by propagation delay achieves K

2
DoF on the delay-based

K- user interference channel.



Proof:
(a) Necessity of djidkjdik ≡ dijdjkdki mod(xn − 1), n ∈ N:

Let i, j, k ∈ K be pair-wise distinct. By relabeling the
indices in (24) to i→ j, j → k and k → i, we obtain (26).
And by relabeling the indices in (24) to i→ k, j → i and
k → j, we obtain (27), resp.:

(24) ∶ djixpi ≡ djkxpk mod(xn − 1),

dkjx
pj ≡ dkix

pi mod(xn − 1), (26)
dikx

pk ≡ dijx
pj mod(xn − 1). (27)

These three equivalences are solvable, if and only if the
following holds:

djidkjdik ≡ djkdijdki mod(xn − 1). (28)

Otherwise, perfect IA cannot be applied.
(b) Necessity of det(Dj,k,i) ≢ 0, n ∈ N:

Inserting (26) into the separability condition of the inter-
user interference (23) yields:

djjdkid
−1
kjx

pi ≢ djix
pi mod(xn − 1)

⇒ 1 ≢ djidkjd
−1
ki d

−1
jj mod(xn − 1)

⇒ 0 ≢ det(Dj,k,i) mod(xn − 1), (29)

for pair-wise distinct i, j, k ∈ K. If det(Dj,k,i) ≡ 0 holds
for any pair-wise distinct i, j, k ∈ K, the separability
conditions cannot be fulfilled for perfect IA.

(c) Necessity of n > 1 time-slot:
Only n = 1 time-slot would preclude any separation of
desired and interfering messages necessary for (23).

(d) Sufficiency of djidkjdik ≡ dijdjkdki mod(xn − 1) and
det(Dj,k,i) ≢ 0 and n = 2 for pair-wise distinct i, j, k ∈ K
to achieve K

2
DoF:

Firstly, we can assume the valid propagation delay matrix
D = x1IK + (1K×K − IK)x

2 as also considered in [1,
Appx. I]. The condition (28) holds since any non-diagonal
entry is x2, i. e., djidkjdik ≡ dijdjkdki ≡ x2x2x2 ≡

1 mod(x2 − 1). The condition (29) also holds since
det(Dj,k,i) ≡ x

3(x1 − 1) ≢ 0 mod(x2 − 1).
There are further valid delay matrices D: If all entries
of a row in the given D are right-shifted by xm,m ∈ N,
the two conditions still hold, e. g., for a shifted row j we
obtain (djixm)dkj ≡ dki(djjxm) mod(x2 − 1).
W. l. o. g., we can fix p1 and determine all other pi with
i ≠ 1 ∈ K by applying the perfect IA condition in (24):

xpi ≡ d−1
ji dj1x

p1 mod(x2
− 1).

Altogether, K messages can be conveyed interference-
free in n = 2 time-slots, i. e., K

2
DoF are achieved.

This also achieves an upper bound as we will show in
Section VI, Lemma 5.

A corresponding node placement for this special case of
delay matrix D is investigated in [5], [9]. However, a general
solution for node placement of K users with any valid delay
matrix D exceeds the scope of the present paper.

VI. UPPER BOUNDS ON THE DEGREES OF FREEDOM
IN DELAY-BASED INTERFERENCE CHANNELS

In the following, we provide an upper bound on the DoF to
prove the optimality of Theorems 1 and 3 in terms of Cyclic
IA. The given upper bound is analogous to [4, Thm. 1], albeit
applied to the delay-based interference channel.

We assume a fully-connected multi-user interference chan-
nel with KT transmitters and KR receivers. This allows us to
derive the upper bounds for quite a general set of delay-based
interference channels. The number of desired messages for
any receiver-transmitter pair (Rxj ,Txi) within n time-slots is
expressed by a messaging matrix M = (mji)1≤j≤KR,1≤i≤KT

with mji ∈ N0. The total number of desired messages M
is simply computed by adding all elements in the messaging
matrix M . We denote the j-th row vector of M by µj s. t.
M = (µT

1 , . . . ,µ
T
KR
)T holds:

µj = (mj1, . . . ,mjKT
).

The number of desired messages to be conveyed from all
transmitters to Rxj corresponds to summing up the entries
in the j-th row vector:

∥µj∥1 =∑
KR

i=1
mji.

The messages transmitted from Txi are given by the i-th
column vector νi of M s. t. M = (ν1, . . . ,νKT

) holds:

νi = (m1i, . . . ,mKRi).

The total number of messages from Txi is computed by the
1-norm of the i-th column vector vi, respectively:

∥νi∥1 =∑
KR

j=1
mji.

In general the multiple-access interference condition de-
mands separability of all ∥µj∥1 desired messages, s. t. these
messages are received interference-free at Rxj . Furthermore,
the intra-user interference condition demands separability
of all ∥νi∥1 messages transmitted from Txi. For a pair
(Rxj ,Txi), at least ∥µj∥1 + ∥νi∥1 − mji time-slots ensure
the two given separability conditions. Since entry mji appears
twice when adding the 1-norm of row and column vectors, it
must be subtracted once.

To further ensure the inter-user interference condition, the
maximum of the sum ∥µj∥1 + ∥νi∥1 −mji over all i, j ∈ K
provides the minimal feasible n. Altogether, the minimal
number of n time-slots in a fixed messaging matrix M is
lower bounded by:

n ≥ max
νj ,µi,mji

(∥µj∥1 + ∥νi∥1 −mji)

=max
mji

(∑
KT

i=1
mji +∑

KR

j=1
mji −mji) , (30)

with j ∈ {1, . . . ,KR} and i ∈ {1, . . . ,KT}.
The DoF defined in (3) are the number of messages per in

one period of n time-slots and hence upper bounded by:

DoF ≤
∑
KR

j=1∑
KT

i=1 mji

max
mji

(∑
KT

i=1 mji +∑
KR

j=1mji −mji)
. (31)



We do not prove whether the upper bound is tight in the
general case. Nonetheless, the following two Lemmas 4 and 5
yield tight upper bounds to Theorem 1 and 3, respectively.

Lemma 4. The upper bound on the DoF of the delay-based
2-user X- channel is 4

3
DoF and tight.

Proof:
The messaging matrix of an X- channel with KR =KT = 2 is
defined as the 2 × 2 matrix of ones:

M = (µT
1 ,µ

T
2 )

T
= 12×2.

The total number of desired messages in M is M = 4. The
1-norm of each row vector and of each column vector yields:

µ ∶= ∥µ1∥1 = ∥µ2∥1 = 2,

ν ∶= ∥ν1∥1 = ∥ν2∥1 = 2.

Furthermore, η ∶= mji = 1 holds for all i, j ∈ K. The minimal
number of time-slots is lower bounded by:

n ≥ µ + ν − η = 3.

The upper bound of 4
3

DoF is tight in this case since the
achievability shown in Theorem 1.

Lemma 5. The upper bound on the DoF of the delay-based
K-user interference channel is K

2
DoF and tight.

Proof:
The messaging matrix of a K-user interference channel with
KT =KR =K is defined as the identity matrix:

M = (µT
1 , . . . ,µ

T
K)

T
= IK .

The total number of transmitted messages is M = K. We
obtain the following 1-norms for each row and column vector,
resp.:

µ ∶= ∥µ1∥1 = ⋅ ⋅ ⋅ = ∥µK∥1 = 1,

ν ∶= ∥ν1∥1 = ⋅ ⋅ ⋅ = ∥νK∥1 = 1.

The η ∶=mji = 0 is minimal for any j ≠ i ∈ K. The minimal
number of time-slots is lower bounded by:

n ≥ ν + µ − η = 2.

The resulting upper bound of K
2

DoF is tight in this case since
the achievability is shown in Theorem 3.

VII. DISCUSSION

The main ingredient to enable the proposed Cyclic IA
scheme is the cyclicality of the discrete, normalized propa-
gation delays in the n-periodic channel access. Being aware of
the fact that the consideration of such constrained propagation
delays seems quite artificial w. r. t. contemporary wireless
channel models, we believe that our proposed method might be
transferable to other models which include similar comparable
cyclic properties aside from propagation delay. The basic
model is capable to describe multi-user interference and to
support the concept of interference alignment. We show the

practicability to formulate simple conditions that have also
been observed in more established channel models and to
proof optimality criteria. As it has been done similarly for
the linear deterministic channel model [6], we conjecture that
schemes developed on the Cyclic IA might be translated to
practical models in a subsequent step. We intended to reveal
a less extensive solution that focuses on basic traits of Cyclic
IA and that permits an easier mathematical generalization.

The recent works [13], [14] also consider a related cyclic
setup for submarine communication systems applying a
scheduling approach. In a work on line-of-sight channels [7],
certain cyclic effects are observed for IA to some extend.
But the considered approach relies heavily on computationally
extensive graph-theoretic approaches.

The given figures and delays do not specify the absolute
scale of node placement. The idea could be implemented in
a very large scale, e. g., in deep space, where long propa-
gation delays are present and large time-slots can be used as
mentioned in [12]. In that case, the synchronization of the
delayed time-slots should be maintained sufficiently static and
accurately predictable, even if many users are involved. Vice
versa, it is possible to consider a very small scale of the
time-slots and the node placement [5] s. t. node placement
becomes a placement problem of antennas. However, the
synchronization would surely be very challenging.

VIII. CONCLUSIONS

In this work, we formalized the communication model for
Interference Alignment by propagation delay utilizing cyclic
right-shifts of polynomials as known from cyclic codes. The
given model is elaborated for a delay-based X- channel and a
delay-based K- user interference channel.

A set of defined separability conditions ensure the decod-
ability of all messages involved in the considered communica-
tion scenarios. These separability conditions discern multiple-
access, inter- and intra-user interference. This classification of
interference facilitates the derivation of sufficient and neces-
sary conditions for the feasibility and for the optimal solutions
of the Cyclic Interference Alignment scheme as presented in
Theorem 1 and Theorem 3.

Beyond that, it is shown under certain conditions, that
the users can be positioned in Euclidean space by a node
placement scheme such that Cyclic Interference Alignment
by propagation delay is valid in two dimensions for the given
2-user X- channel.

We also remark that the Cyclic Interference Alignment
scheme is not limited to the considered delay-based scenarios
and presume that it might be portable to any channel model
that involves comparable cyclic properties.
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