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Abstract—In this paper, we consider a heterogeneous network
with one macro node and one pico node. We are concerned with
the problem of associating users in the macro cell, to either the
macro node or the pico node, in order to maximize the sum rate
in the downlink. We formulate a new theoretical framework to
study this problem and derive an upper bound on the achievable
sum rate using semidefinite relaxation. Furthermore, we propose
a randomized heuristic to produce a feasible solution, and most
importantly, give an analytic guarantee on its performance.
Independently of the problem data, we can ensure a worst case
performance for the randomization method. In practice, this
guarantee is as good as the standard best SNR heuristic typically
used in 3GPP LTE networks.

I. INTRODUCTION

The main bottleneck of current mobile communication
networks is the lack of available frequency resources. To tackle
this problem, heterogeneous networks (HetNets) [1] are seen
as a very promising approach. Inside a macro cell, with a
macro node using a high transmit power, the idea is to use one
or more pico nodes (using a lower transmit power), in areas
where user equipments (UEs) are highly concentrated, to serve
them using the same frequency resources as the macro node.
This leads to a more efficient use of the available bandwidth
and to higher data rates.

One of the key problems in HetNets is how to associate UEs
to either the macro node or the pico nodes. The standard ap-
proach to this question, in 3GPP Long Term Evolution (LTE)
networks, is the so called best SNR heuristic, which consists in
associating a UE to the node providing the best signal-to-noise
ratio (SNR). The main advantage of this approach is that it
ensures a good signal-to-interference-plus-noise ratio (SINR)
for each UE. The disadvantage is that, since the macro node
uses a higher transmit power than the pico nodes, UEs tend
to be mainly associated to the macro node [2], which leads to
a load imbalance and a suboptimal sharing of the bandwidth.

In this paper, we want to derive a dynamic cell association
scheme, which maximizes the sum rate for the downlink and
analyze the trade-off between load balancing and SINR.

In general, the problem of load balancing in cell association
has been studied for 3G networks. In [3], the authors propose
a centralized approach to the cell association problem and
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consider a scenario in which each node serves a single UE
at each time slot. In [4] and [5], the authors directly tackle the
balancing problem by assuming a proportional fair scheduler.
They derive the optimal cell association by solving a sequence
of Boolean linear programs. Among others, the present work
differs from these contributions because 1) we consider a
HetNet scenario with a large imbalance between the transmit
powers of macro node and pico nodes, 2) we model the specific
trade-off between interference and load balancing and 3) we
use convex optimization methods to derive an upper bound on
the maximum sum rate.

More specifically, in [6] and [7], we have proposed a
heuristic, which works very well in practice. Although it is
very efficient when the channel gains between transmitter
and receiver are more or less proportional to the distance
between them, it may underperform in case of strong fading or
obstacles presence. The main novelty of the present paper is 1)
a more elegant theoretical framework, taking into account any
kind of channel gains distribution, 2) a new heuristic based
on randomization techniques and 3) we can guarantee the
performance of this heuristic independently of the problem
data, i.e., no matter how strong the channel fading is, our
method always performs at least as good as this guarantee.

The remainder of the present paper is organized as follows.
In Section II, we detail our theoretical framework and present
the optimization problem to be solved. In Section III, we first
give an upper bound on the achievable sum rate using semidef-
inite relaxation and then propose a randomized heuristic to
produce a feasible cell association. In Section IV, we develop
analytical bounds on the performance of this heuristic, in order
to guarantee a minimum sum rate for any problem data set. In
Section V, we present numerical results to validate our work
and finally Section VI concludes the present paper.

II. SYSTEM MODEL AND OPTIMIZATION PROBLEM

We consider downlink communication in a simple HetNet
with one macro node, one pico node and n UEs. Each UE
should be associated to either the macro node or the pico
node. This scenario is illustrated in Figure 1. Our goal is to
find the association that maximizes the sum rate. Note that this
metric is chosen for simplicity of exposition and the following

2397



macro node

(node 1)

* pico node
¢ (node?2)
UEn

Fig. 1. Scenario with tightly coordinated macro and pico nodes.

approach can be used to maximize, a.o., a weighted sum rate,
the minimum rate or the sum rate with rate constraints.

In the following we call the macro node, node 1, and the
pico node, node 2. Node ¢ has a transmit power ;. Each UE j
receives a power 0;; = g;;0; from node i, where g;; denotes
the channel gain between node ¢ and UE j. Furthermore we
define o as the sum of the power of the noise on the channel
and the power of the interference coming from outside the cell.

Each node utilizes the same frequency bandwidth B. In
this paper we assume that each node always uses its complete
available bandwidth and shares it equally among all its asso-
ciated UEs. This models a Round-Robin scheduler. This has a
very important consequence. Since we consider the downlink,
if a node is active, it creates interference at all UEs that are
not associated to it. This interference is treated as noise at the
receivers.

In order to formulate a tractable optimization problem, we
depict the following three cases.

1) All UEs are associated with node 1. Only node 1 is
active. The achieved sum rate p; is given by

Bn 5'1'
B (i 8).
) n;og + o (1)

2) All UEs are associated with node 2. Only node 2 is
active. The achieved sum rate ps is given by

B & ( &2-)
:721 14+ =L ). 2
P2 anIOg +UN 2)

3) At least one UE is associated with each node. Both node
1 and 2 are active. Define the rate vectors ry and rs as

Tiszlog<1+AL
: Okj +ON

), k#i.  (3)

Note that r;; represents the rate that UE j would get
from node ¢ if it would get the bandwidth B allocated.
The actual rate that UE j gets, after that the bandwidth
has been equally distributed among all UEs, is ry;
divided by the number of UEs associated to node .

To find the association that maximizes the sum rate, we can

simply evaluate p; and p,. We only have to formulate the
sum rate maximization problem for the third case. We define

an optimization variable z, given by

if UE j is associated with node 1,
if UE j is associated with node 2.

ijl
Zjif

4)

The problem of finding the association that maximizes the
sum rate when at least one UE is associated with each node
can be formulated as

T T -
maximize r(1+2) , 1 z) 5
z 1T(1+2z) 171 -12)
subject to  z; € {—1,1}, i=1,...,n,

where 1 is a vector containing only ’1’s. The domain D of
the optimization problem is given by

D={{-11}"\{-1,1}}, (6)

the optimal value of (5) is denoted by p* and the corresponding
association by z*.

Finally, to find the overall optimal cell association, we
evaluate max(py, po, p*). If p* is the maximum then z* is the
optimal association, otherwise if p; is the maximum, all UEs
are associated with node :. From now on we only consider
problem (5).

III. SEMIDEFINITE RELAXATION AND RANDOMIZATION
The problem (5) can be reformulated as follows
L zTA1z+b;rz+cl
maximize

z zTAsz + ¢
subject to  z; € {—1,1}, i=1,...,n,

(7

with A} 2 —(r11T +1217T), by & (nI — 11T)r; + (117 —
nI)ro, ¢ 2 n(rT1+1r71), Ay £ —117 and ¢y £ n?.

Next it can easily be shown that the problem (7) is equiva-
lent to solving the following problem

zTAz + tbrlrz +t2¢q

zT Az + t2co
zie{-1,1}, i=1,...,n,
te{-1,1}.
Indeed if ¢ = 1 then (8) is exactly (7). If t = —1 and z* is
the solution of (8) then —z* is the solution of (7).

Finally we introduce a variable x = [z" #]T. The problem
(8) can be rewritten as

®)

maximize
z,t

subject to

maximize X Ax )
X 17 —
x XTBX
subject to z; € {-1,1}, i=1,...,n+1,
with
a| A (1/2)]01} a {Az 0}
A lapr o 0 BT ot o)

where O is a vector containing only *0’s. We denote by ¢* the

optimal value of (9). The domain D, of (9) is
D, ={{-L,1}""\{x |21 = =z, ==%1}}. (10)

This problem is a hard combinatorial problem. Apart from
the binary constraint, one of the main difficulties is that A
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and B are not definite. However, it is important to keep the
following Lemma in mind.

Lemma 1. For all x € {—1,1}""1 it holds

xTAx >0, x'Bx>0.

Proof:

xTAx = zTAz+ tb?z +t2¢
2l (1 +z/H)1T (1 - z/t)+

ra (1 —z/t)17(1 + z/t)).

Since ry and ry are strictly positive rate vectors and z/t €
{—=1,1}", the rhs is positive. Now since at least one entry of
z is 1 and at least one is —1, both 1 4+ z/t and 1 — z/t have
at least one strictly positive entry and xT Ax must be strictly
positive. Similarly

xTBx =n?-2zT11"4z.

Since at least one entry of z is 1 and at least one is —1,
z711%z < n?. ]

In the next sections, we find an upper bound on the optimal
value of problem (9), then propose a randomization algorithm
producing a feasible solution and finally give a guarantee on
the performance of this heuristic.

A. Sum Rate Upper Bound using Semidefinite Relaxation

Since the problem (9) is hard to solve, we will first try to
find a good upper bound on ¢*. In order to do that, we proceed
to the following change of variable X = xxT. By noting that

X = xx7T is equivalent to saying that X has rank one and is
positive semidefinite, the problem (9) is equivalent to
tr(AX
max)i(mize tiEBX; (11D
subject to  diag(X) =1,
X =0, rank(X)=1,
ZZX” S 7’7,2 - 2(n - 1),
i=1 j=1

where the last constraint makes the domain D, of problem (9)
explicit, in the form of a sum over the components of X.

To make problem (9) tractable and to upper bound ¢*,
we relax (11) by dropping the rank constraint (which is
nonconvex) and solve

tr(AX
max%(mize tiEBXi (12)
subject to  diag(X) =1,
n n
X0, 3 Y X <n®—2(n—1).
i=1j=1

The solution of (12) is denoted by X* and the optimal value
by s*.

This problem is a quasiconcave problem [8] since all its
constraints are convex and its objective function is quasicon-
cave. This problem can be solved efficiently, using, e.g., the

bisection method, with free open source software packages
like, e.g., CVX [9]. Since (12) is a relaxation of (9), it holds
. tr(AX™)

*
< .
T =% = 4BxX)

13)
Next we propose a heuristic to produce a feasible solution for
the problem (9).

B. Randomization Heuristic

The principles of the randomization method to solve com-
binatorial problems have been introduced in [10], [11] and
[12].

The proposed algorithm in our case, goes as follows.

1) Solve (12) and find X*.

2) Generate a random vector y ~ A (0, X*).

3) Evaluate x = sgn(y), where sgn is the sign function.

If x € D, then it is feasible for (9), else it is ignored.

4) Take z = w1 1[x1 ... 2,]T. The vector x is a feasible

solution of (5).

5) Repeat from step 2) and always keep the association

providing the best sum rate.

The number of iterations does not have to be large. Mainly
we are interested in getting a good solution (in contrast
to optimal) and this is achieved relatively quickly. We call
r* the sum rate obtained by the randomization algorithm.
On average, this method achieves an average sum rate of
Ex[xTAx/xTBx]. Since we only keep the best realization of
the randomization algorithm, with overwhelming probability
it holds that r* > E,[xT Ax/xTBx]. Finally the association
produced by the randomization heuristic is not necessary
optimal and we have

xTAx

xTBx

o r(AXY)
~ tr(BX*)

IN

Ex { } <rr<q (14)
In the next section, we present results showing how tight these
bounds can be.

IV. PERFORMANCE GUARANTEE

In this section we want to characterize the ratio 7*/s*. If we
can show that 7*/s* > «, then it holds that the randomization
method always provides a sum rate greater than or equal to
aq*. If a is independent of A and B, we can guarantee a sum
rate of aig™ for any possible channel gain distribution. In order
to obtain a guarantee on the performance of the randomization
method, we have to evaluate the expression Ex[xT Ax/xTBx]
and compare it to tr(AX*)/tr(BX*).

Definition 1. The joint moment generating function of the two
functions xTAx and xTBx is given by

M (ty,ts) = Eyx[exp(t;xT Ax + tox T Bx)].
Lemma 2.

Ex {XTAX} _ / ’
xTBx _

o0

OM (t1,t2)
oty

dts.
t1=0
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Proof:

0
OM (1,1
oM, t2) dt,
—o0 oty t1=0
/ OB [exp(t1xT Ax + toxTBx)] it
= 2
Oty t1=0
B /O dexp(t1xT Ax + toxTBx) it
= [Ey - ot o 2
r 0
= [E4 / xT Ax exp(tox'Bx) dt2:|
- E, :LTAX} .
L xTBx
| |
Proposition 1.
E {XTAX} _ Ex[xTAx]
*[xTBx] — Ex[xTBx]’

Proof: The proof follows the one of [13] originally for B
positive definite. It is however simplified, more detailed and
adapted to our present scenario. It is mainly based on Laplace
approximation. We first decompose the rhs of Lemma 2 as
follows

/O OE [exp(t1xT Ax + toxTBx)]
ot

dto

t1=0

0
= / Ex[xTAx exp(toxTBx)] dty

0
/_ Fi(ta) exp(falts)) dis,

with
_ Ex[xTAx exp(tyx"Bx)]
filt2) = Ex[exp(t2xTBx)] ’
and
fa(ta) = log(Eyx[exp(taxTBx))).

Now we will approximate this integral using Laplace method.
Since x "Bx > 0 on the feasible set (see Lemma 1) and the log
function is strictly increasing, then f2(¢2) attains its maximum
at the boundary of the integral, i.e., at {3 max = 0. The key
here is to understand that the points ¢5 around £ ax are going
to make the most significant contribution to the integral. The
Laplace method consists in replacing f1(t2) by f1(t2,max) and
making a first order Taylor approximation of fo at t2 max,
namely

fa(tz) = log(1) + toEx[x" Bx].

It follows that

0
[ f1(t2) exp(falta)) db

0
fl t2 max eXP(tzE [ TBXD dts.

12

OOC
= / Ey[xTAx] exp(toEy[x T Bx]) dts.
 E.xTAx
- EX[XTBX]

|
Lemma 3.

xTAx Ex[xT Ax]
Ex = O(n~!

L{TBX ~ Ex[xTBx] +0(™)

Proof: This bound comes directly from the error induced
by the approximation in Proposition (1). In [13], the author
shows that if Ex[xTAx] = O(n), the cumulants of xTBx
and the joint cumulants of xT Ax and xTBx are of order n,
then the approximation error is of order n . [ ]

Note that in the following, since we generate many X’s
at random and keep the best realization, we actually achieve
a sum rate 7* greater than Ey [x" Ax/xTBx], and we can
neglect the term O(n~1).

Lemma 4.

2

Ey[xTAx] = Ztr(Aarcsin(X*)),
T
2

Ey[xTBx] = = tr(Barcsin(X*)).
T

Proof: See [14] or [12], for a detailed proof. |

We can now state one of the main results of this paper,
which is a guarantee on the performance achieved by ran-
domization.

Proposition 2.
r* S tr(Aarcsin(X*))tr(BX*)

s* = tr(Barcsin(X*))tr(AX*)’
Proof: We simply plug Lemma 3 and 4 in (14). |
As we will see, in practice, this bound is quite tight. In the
following we present other bounds, independent of A, B or
X*. These bounds will be looser but in a sense more general.

Lemma 5.
tr(Aarcsin(X*)) > tr(AX™*).
Proof: As shown in [11], it holds that
arcsin(X™) = X*.
It remains to evaluate the difference between the lhs and rhs.
tr(Aarcsin(X*)) — tr(AX*)

= tr(A(arcsin(X*) — X*))
> Amn(arcsin(X*) — X*))tr(A)

Since arcsin(X*) = X*, we have Ay, (arcsin(X*)—X*) > 0.
Finally tr(A) = (n — 1)1T(r; +r3) > 0. [

Finally we give a guarantee on the performance of the
randomization heuristic, which is independent of the problem
data.
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Proposition 3.
r* < tr(BX™*)

s* = tr(Barcsin(X*))’
Proof: We simply use Lemma 5 in Proposition 2. ]
This bound, while less tight than the previous one, is very
interesting since it does not depends on A and consequently

on the rate vectors.

Corollary 1. Fori,j =1,...,n, it holds

nQ—n—QZX:j

*

T i>j
i 3 :
s 5(71 —n)—2 ; arcsin(Xi*j)

Proof: This is immediate by using the fact that A, =
—117T, ¢y = n? and diag(X*) = 1. [ ]
Proposition 4.

r* S 4
st n(g—l) +m+2

Proof: Define

a1 2 )Xy | X35> 0),

i1>7
b2 (X5 | X} <0),
i>j
as = (Z arcsin(X7;) | X75 > 0),
i>j
by & (Z arcsin(X7;) | X7 < 0).
i>j

We decompose and bound the rhs of Corollary 1 as follows
r* n27n72(a1+b1)
s* g(n2 —n) —2(az + be)
n? —n—2(a; +by)
% =) = 2(a1 + by)

vV

Since from problem (12), it holds that
ZZX” S 7’L2 — 2(”— 1),

i=1 j=1
we have a; < (n—1)%2 — (n—1) and b; > 2(n — 1). It is not
difficult to show that the last ratio above attains its minimum
at the boundaries, i.e.,

r* 4
s n(g—l)—i—ﬂ'—i—Q

|

This bound is very useful since it is totally independent
of the problem data. For any instance of the data, we can
guarantee that randomization is no more suboptimal than this
bound. Of course this bound goes to 0 when n grows. But there

are two important facts to note. First, this bound simply tends
to indicate that randomization will perform relatively worse
when the number of UEs is large. Second, we have to keep in
mind that this guarantee is relative to an upper bound. If this
upper bound would grow at the same speed as the guarantee
decrease, we would have a constant absolute guarantee with
respect to n, as shown in the next section.

V. NUMERICAL EVALUATION

In this section we evaluate the performance of the random-
ization method with respect to the problem size and compared
to the best SNR heuristic used in 3GPP LTE networks. The
different cell associations are evaluated in a simplified radio
network composed of one macro node with a Tx power of
40W and one pico node with a Tx power of 1W. Each node
operates with a SMHz bandwidth. The pico node is randomly
dropped within the macro cell area with a radius of 167m.

As proposed in [15], we calculate the average channel gain

between the macro node and a user j as g1; = —(128.1 +
37.61log(d1;)), while the average channel gain between the
pico node and a user j is given by g¢go; = —(140.7 +

36.71og(d2;)), where d;; denotes the distance between the
user j and the node ¢ in km. The users are dropped in a
hotspot of 40m radius around the pico node with a probability
of 2/3. The following results are generated by averaging over
100 user drops.

In Figure 2, we plot the upper bound obtained by solving
problem (11), the sum rate achieved by the randomization
method, the best SNR heuristic and finally the guaranteed
sum rate, attained according to Proposition (4). There are
10 UEs deployed and the noise and interference level goes
from —160 to —80dBW. The first thing to observe is that
the randomization heuristic clearly outperforms the best SNR
heuristic for all noise levels, and the gap is extremely large
when the noise level is low. Then we can compare the sum rate
achieved by the randomization method to the upper bound and
the guaranteed sum rate. The randomization method performs
close to the upper bound in low and high SNR regime.
However it is further away in the moderate SNR regime. From
previous results in [6], we can say that the randomization
method does not performs more poorly in the moderate SNR
regime. By comparing the upper bound in [6] and the present
one we can say that the present upper bound is simply less
tight in this regime. The guaranteed sum rate is stable in
high and moderate SNR regime and converges with the rate
obtained using randomization in the low SNR regime. Finally,
the most interesting result can be observed by comparing the
best SNR heuristic and the guaranteed sum rate. The two
curves are very close to each other, the best SNR heuristic
being only slightly better. In other words, the randomization
method is guaranteed, to perform at least as good as the best
SNR heuristic, for any possible instance of problem data.

In Figure 3, we plot the distribution of pico users for
different noise levels for the randomization method and the
best SNR heuristic. Since the best SNR heuristic only depends
on the received powers from the macro and pico nodes, its
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cell association is always the same. The randomization uses
the same pico users ratio as the best SNR heuristic, at a low
noise level, increases to 80% in the moderate noise level and
decreases again when the noise level is high. Interestingly, it is
when the noise level is low that randomization outperforms the
best SNR heuristic the most. In this case, the randomization
chooses a completely different strategy, but in average, over
all drops, the ratio of pico users is the same. It does not mean
that the strategy is the same.

In Figure 4, we plot the sum rate with respect to the
number of UEs in the macro cell when o = —128dBW. The
striking observation here is that the guaranteed sum rate is
nearly constant and close to the sum rate achieved by the best
SNR heuristic. From Proposition 4, we showed that the ratio
r*/s*, was decreasing with n and one could expect that the
guaranteed rate would do the same. On the contrary, because
the upper bound increases linearly with n, at around the same
speed as the ratio in Proposition 4 decreases, then we can
guarantee a constant sum rate independent of n. In conclusion,
the randomization method perform in average better than the
best SNR heuristic for any number of nodes, and is guaranteed
to perform at least as good as the best SNR heuristic.

VI. CONCLUSION

In this work, we have presented a new approach to the
problem of cell association for the downlink of HetNets. We
have proposed a semidefinite relaxation of the maximum sum
rate problem and developed a randomized heuristic to find a

1,8 ~ T T T T T T T =
16| = Upper bound - @- Randomization

—— Best SNR
1.4

1.2

- ®- Guarantee

08} -.‘—.—&.—‘—.—.—0"“0’“."’.

0.6 -
0.4 -

0.2 b ; ; ; | | : : : : : =
2 4 6 8 10 12 14 16 18 20

Number of UEs n

Sum rate [108- b/s]
—
T

Fig. 4. Sum rate for different number of UEs, oy = —128dBW.

feasible association. Furthermore we have given an analytical
guarantee on the performance of this heuristic, which does
not depend on the problem data. Finally we have verified
our results through numerical evaluations and shown that our
approach outperforms the standard best SNR heuristic, while
guaranteeing a similar worst-case sum rate. In future works
we want to consider scenarios with several cells, as well as
several pico nodes per cell.
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