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Abstract—In the present work, a discrete-time stationary
Rayleigh flat-fading channel with unknown channel state infor-
mation at the transmitter and the receiver is considered. The
law of the channel is assumed to be known at the receiver
and the fading process is supposed to be a stationary Gaussian
process with an absolutely summable autocorrelation function.
The conditional per symbol entropy of the output given the
input is shown to converge to a constant for almost every
realization of i.i.d. input variables. This implies the existence
of the corresponding conditional entropy rate. Moreover, a novel
inequality yielding a lower bound for the rate is derived.

I. MOTIVATION AND SETUP

We consider a stationary Rayleigh flat-fading channel where

the channel state information is unknown at the transmitter and

the receiver. Moreover, the law of the channel is assumed to

be known at the receiver. Often, this channel is referred to as

noncoherent fading channel. As this scenario corresponds to

the basic model of nearly all realistic mobile communication

systems it is particularly important. Nevertheless, determining

the capacity of this channel turns out to be notoriously difficult

and the problem is still open in general.

There have been already several attempts to approximate the

capacity of noncoherent fading channels by bounds, see, e.g.,

[1], [2]. For the case of i.i.d. zero-mean proper Gaussian input

symbols, which are capacity-achieving in the coherent setup,

in [3] bounds on the achievable rate have been derived. One of

the hardest problems when studying the capacity or achievable

rate of stationary Rayleigh fading channels is the evaluation

of the conditional entropy rate of the channel fading process.

This is the main topic of the present paper. The proofs and

extended material are contained in technical report [4].

A. Channel Model

We consider an ergodic discrete-time jointly proper Gaus-

sian [5] flat-fading channel, whose output at time k is given by

yk = hk · xk + nk
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where xk ∈ C is the complex-valued channel input, hk ∈ C

represents the channel fading coefficient, and nk ∈ C is

additive Gaussian noise. The discrete-time processes {hk},
{xk}, and {nk} are assumed to be jointly independent.

We assume that the noise {nk} is a sequence of i.i.d.

proper Gaussian random variables of zero-mean and variance

σ2
n > 0. The stationary channel fading process {hk} is zero-

mean jointly proper Gaussian with variance σ2
h and covariance

function

rℓ = E[hk+ℓ · h∗
k].

For technical reasons we confine ourselves to absolutely

summable covariance functions, i.e.,
∑∞

ℓ=−∞
|rℓ| < ∞. The

normalized PSD of the channel fading process is defined by

Sh(f) =

∞
∑

ℓ=−∞

rℓe
−j2πℓf , |f | < 1

2
,

where j =
√
−1. Here, the frequency f is normalized with

respect to the symbol duration.

We use the following matrix-vector notation of the system

model:

yN = XNhN + nN

where the vector hN is given by hN = [h1, . . . , hN ]T . The
vectors yN and nN are defined analogously. The matrix XN

is diagonal and defined as XN = diag(xN ) with xN =
[x1, . . . , xN ]T . Here, diag(·) denotes the diagonal matrix

whose entries are given by the components of the argument

vector. The quantity N is the number of considered symbols.

In this paper, we will investigate the limit as N → ∞.

The temporal correlation of the fading process is now

expressed by the covariance matrix

RN = E[hNhH
N ]

which is an N ×N nonnegative definite Toeplitz matrix.

We assume that the input variables x1, x2, . . . are i.i.d. and

that E[|x1|4] < ∞. This implies that the xk satisfy an average

power constraint of the form

E
[

|xk|2
]

≤ σ2
x, k = 1, 2, . . . . (1)



B. Mutual Information Rate

The mutual information rate between the channel input and

its output, i.e., the achievable rate for a given input distribution

is given by

I ′(y;x) = lim
N→∞

1

N
I(yN ;xN )

= lim
N→∞

1

N
{h(yN )− h(yN |xN )}

= h′(y) − h′(y|x), (2)

provided the limits exist. Here h(·) and h′(·) are the differ-

ential entropy and the differential entropy rate, respectively.

Moreover, x = {xk}k∈N denotes the stochastic process of

input variables. The process y is defined analogously. Station-

arity of y ensures that the limit h′(y) exists.

The focus of the present paper is on the second term of the

RHS of (2), i.e., on h′(y|x). Consider a sequence of determin-

istic input symbols ξ1, ξ2, . . . ∈ C. Let ξN = [ξ1, . . . , ξN ]T

and ΞN = diag(ξN ). Conditional on xN = ξN , yN is proper

Gaussian with zero mean and covariance matrix

E
[

yNyH
N |xN = ξN

]

= ΞNRNΞH
N + σ2

nIN

where IN is the identity matrix of size N×N . The conditional

entropy of yN given xN = ξN is therefore given by

h(yN |xN = ξN ) = log det
(

πe
(

ΞNRNΞH
N + σ2

nIN
))

= log det
(

πe
(

ΞH
NΞNRN + σ2

nIN
))

. (3)

Hence, the conditional entropy of yN given xN is

h(yN |xN ) = E
[

log det
(

πe
(

ZNRN + σ2
nIN

))]

,

where ZN = XH
NXN is the diagonal matrix with entries zk =

|xk|2, k = 1, . . . , N . By definition, the conditional entropy

rate h′(y|x) reads as

h′(y|x) = lim
N→∞

1

N
h(yN |xN )

= lim
N→∞

1

N
E
[

log det
(

πe
(

ZNRN + σ2
nIN

))]

(4)

if the limit exists. It is well-known that, in general, the entropy

rate may fail to exist, see [6, pp. 74-75] for a simple example.

For the unconditional entropy h(yN ) = −E[log pN(yN )],
where pN is the density of yN , the existence of the limit

of 1
N
h(yN ) is an immediate consequence of the stationarity

of y. However, the fact that for the ergodic process y,

− 1
N
log pN (yN ) converges almost surely to h′(y) is a deep

result [7], [8]. The study of the limit of 1
N
h(yN |xN = ξN ) in

(3) and the existence of h′(y|x) in (4) are the main focus of

the present paper. Moreover, we present bounds for h′(y|x).

II. EXISTENCE OF THE CONDITIONAL ENTROPY RATE

Let z1, z2, . . . be nonnegative i.i.d. random variables and

ZN = diag(z1, . . . , zN ). Let rj ∈ C, j ∈ Z, and let r−j = r∗j
for all j. Let RN = (rj−k)

N
j,k=1.

Theorem 1. Suppose that E[z21 ] < ∞. Suppose RN is

nonnegative definite for all N and
∑∞

j=0 |rj | < ∞. Then there

is a constant c ∈ [0,∞) such that

lim
N→∞

1

N
log det(ZNRN + IN ) = c a.s. (5)

Outline of the proof: Denoting the eigenvalues of ZNRN

by λ
(N)
j we show that 1

N

∑N

j=1 f(λ
(N)
j ) converges a.s. to a

constant when f(x) = log(x+ 1). We first consider the band

Toeplitz matrices obtained from the RN by replacing rj with

zero for all j with |j| > ℓ, where ℓ is some fixed integer.

For these matrices, we prove the corresponding convergence

result for the functions f(x) = xs, s ∈ N. Letting ℓ become

large, we then extend this result to Toeplitz matrices RN with
∑∞

j=0 |rj | < ∞ under the assumption that the zj are bounded.
This convergence result for the functions xs can be extended

to log(x+ 1) by a standard approximation argument. Finally,

we apply a truncation argument to weaken the boundedness

assumption to the assumption that the zj have a finite second

moment.

From Theorem 1 it follows that there is a constant c′

such that 1
N
h(yN |xN = ξN ) converges to c′ for Px-almost

every input sequence {ξk} ∈ C∞, where Px denotes the

law of the input process x. Since the sequence given by

the argument of the limit in (5) is uniformly integrable,

the expectation converges to c′ as well, see, e.g., [9,

Theorems 16.14 (i), 25.12]. Thus, the conditional entropy

rate h′(y|x) = limN→∞
1
N
h(yN |xN ) exists and is equal to

the constant c′ yielding the following corollary.

Corollary 1. If E[z21 ] < ∞, RN is nonnegative definite for

all N and
∑∞

j=0 |rj | < ∞, then there is a constant c ∈ [0,∞)
such that

lim
N→∞

1

N
E[log det(ZNRN + IN )] = c.

In particular, the conditional entropy rate h′(y|x) exists in R

and for Px-almost every input sequence {ξk} ∈ C∞,

lim
N→∞

1

N
h(yN |xN = ξn) = h′(y|x).

III. A NEW INEQUALITY FOR BOUNDING THE

CONDITIONAL ENTROPY RATE

In this section, we apply a rearrangement argument to

establish a new determinantal inequality, which implies a lower

bound for h(yN |xN ). A simple convexity argument yields an

upper bound for h(yN |xN ), and these bounds together with

Szegö’s theorem on the asymptotic eigenvalue distribution of

Hermitian Toeplitz matrices then lead to bounds for the rate

h′(y|x) in terms of the PSD Sh(f).

A. Expectation Inequalities for a Determinant

Theorem 2. Let Q be a nonnegative definite N × N matrix

with eigenvalues γ1, . . . , γN and let Γ = diag(γ1, . . . , γN ).
Let W be an N ×N diagonal matrix whose diagonal entries



w1, . . . , wN are identically distributed nonnegative random

variables. Then

E[log det(WQ+ I)] ≥ E[log det(WΓ+ I)], (6)

and if the entries of W are integrable, then

E[log det(WQ+ I)] ≤ log det(E[W]Γ + I). (7)

Inequality (7) is a direct consequence of Jensen’s inequality.

The proof of (6) rests on an inequality for rearrangements by

Lorentz’, see [10].

B. A Muirhead- and a Rado-type Inequality

Two special cases of (6) yield deterministic inequalities of

interest in themselves.

Corollary 2. Let C be a nonnegative definite N×N diagonal

matrix, let D be a positive definite N × N diagonal matrix,

and let U be a unitary N × N matrix. Let P be either the

set of all N × N permutation matrices or the set of the N

circulant permutation matrices (p
(n)
jk )Nj,k=1, n = 0, . . . , N−1,

where p
(n)
jk = 1 if k − j = n modulo N . Then

∑

Π∈P

log det(UΠCΠHUH +D)

≥
∑

Π∈P

log det(ΠCΠH +D).

C. Bounds for h(yN |xN ) and h′(y|x)
The almost sure convergence in Section II does not reveal

the value of the limit h′(y|x). However, Theorem 2 yields

bounds for h(yN |xN ) = E[log det(πe(ZNRN + σ2
nIN ))].

Denote the eigenvalues of RN by γ
(N)
1 , . . . , γ

(N)
N . Then

1

N

N
∑

j=1

E[log(πe(z1γ
(N)
j + σ2

n))]

≤ 1

N
h(yN |xN ) ≤ 1

N

N
∑

j=1

log(πe(E[z1]γ
(N)
j + σ2

n)). (8)

By Corollary 1, 1
N
h(yN |xN ) → h′(y|x) as N → ∞. To

compute the limits of the bounds in (8) we apply Szegö’s

theorem on the asymptotic eigenvalue distribution of Toeplitz

matrices [11, pp. 64-65] yielding

∫ 1

2

−
1

2

E[log(πe(|x1|2Sh(f) + σ2
n))] df

≤ h′(y|x) ≤
∫ 1

2

− 1

2

log(πe(E[|x1|2]Sh(f) + σ2
n)) df. (9)

The lower bound has also been derived in [3] by a different

approach and the upper bound is known from [12].

If we impose, for some fixed σx ∈ [0,∞), the average

power constraint (1), then

max
x

h′(y|x) =
∫ 1

2

− 1

2

log(πe(σ2
xSh(f) + σ2

n)) df,

where the maximum is taken over all sequences of i.i.d. input

variables xk subject to (1) and E[|x1|4] < ∞. The maximum is

attained when P (|x1| = σx) = 1. In this case, all inequalities

in (8) and (9) are equalities, showing that these bounds are

sharp.

IV. BOUNDS ON THE MUTUAL INFORMATION RATE

In order to bound the mutual information rate we use (9)

in combination with the following lower and upper bound on

h′(y), see [13],

I ′(y;x|h) + h′(y|x,h) ≤ h′(y) ≤ log
(

πe
(

σ2
xσ

2
h + σ2

n

))

.

Since h′(y|x,h) = log(πeσ2
n) we get with (2) the following

upper and lower bound on the mutual information rate, see [3]

for the upper bound and [12] for the lower bound,

I ′(y;x) ≥ I ′(y;x|h) −
∫ 1

2

−
1

2

log

(

ρ
E[|x1|2]

σ2
x

Sh(f)

σ2
h

+ 1

)

df

I ′(y;x) ≤ log(ρ+ 1)−
∫ 1

2

−
1

2

E

[

log

(

ρ
|x1|2
σ2
x

Sh(f)

σ2
h

+ 1

)]

df

where ρ = σ2
xσ

2
h/σ

2
n is the maximum mean SNR. For

a discussion of the tightness of these bounds in case of

Gaussian inputs see [3].
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