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Abstract—This publication analyzes the power allocation prob-
lem for a distributed wireless sensor network which is based on
ultra-wide bandwidth communication technology and is used to
perform object detection. In the considered scenarios the presence
or the absence of an object is observed by the sensors inde-
pendently. Due to noisy communication channels, the interfered
observations are fused into a reliable global decision in order
to increase the overall detection probability. An approach based
on information theory, that aims at maximization of channel
capacity, is employed. It allows for analytically described alloca-
tion of total given power to the sensors and, thereby, optimizes
the overall detection probability. Furthermore, we demonstrate
the feasibility of object detection by using the introduced power
allocation method in ultra-wide bandwidth signaling systems.

Index Terms—Analytical power allocation, channel capacity,
distributed target detection, impulse radio, information fusion,
ultra-wide bandwidth signaling, wireless sensor networks.

I. INTRODUCTION

In this report we analyze the problem of power allocation for
a distributed wireless sensor network with sensor nodes (SN)
based entirely on ultra-wide bandwidth (UWB) technology.
This network is used to perform object detection where
presence or absence of an object is observed by the sensors
independently. UWB signals can be used for data commu-
nication between the SNs as well as for radar applications.
The approach of misemploying the communication sensors as
radar sensors, such that the data transmission is misused as a
radar beam in order to detect a target object, helps realizing
an energy-efficient radar system with compact and cheap SNs,
which fulfills major requirements of wireless sensor networks.
Hence, the integration of sensing functionality into common
UWB sensors should be easy to implement without the usage
of any additional hardware units. Since the compact and low
complexity UWB sensors are limited in power and communi-
cation capabilities, the detection performance of a single sen-
sor is restricted compared to that of a common complex radar
system. To obtain an appropriate overall system performance
we consider the case of distributed detection, where the local
observations of the sensors are fused into a reliable global
decision. Due to noisy communication channels and differ-
ences in distances between the object and the sensors, both, the
observations and their transmissions are unequally interfered.
One simple way to suppress interferences is to increase the
power of each SN. But if the total power of the entire network
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Fig. 1. System model of the distributed wireless sensor network.

is limited, then power allocation procedures are needed in
order to increase the overall detection probability. In general,
the mathematical function of the overall detection probability
can not be analytically evaluated under a Bayesian-hypotheses-
test criterion [1]. This limits the usability of this criterion
for analytical optimization of power allocation. Bounds, such
as the Bhattacharyya bound [2], are also difficult to use for
optimizing multidimensional problems. Therefore, we employ
an information theoretic approach [3] which is based on chan-
nel capacity maximization and, hereby, show the feasibility of
object detection as well as a simple way for analytical subop-
timization of power allocation in UWB signaling systems.

The origin of research on distributed detection was based on
the attempt to fuse signals of different radar devices [4]. Cur-
rently, distributed detection is usually discussed in the context
of wireless sensor networks where the sensor unit of the nodes
might be based on radar technology [5]–[7]. Other applications
for UWB radar systems, which require or benefit from the
detection and classification capabilities, are for example local-
ization and tracking [8] or through-wall surveillance [9]. The
physical layer design for an integrated UWB radar network
that utilizes OFDM technology was analyzed in [10].

II. OVERVIEW AND SYSTEM DESCRIPTION

In the following parts of this paper we use the set of natural
numbers N and the set of real numbers R. Furthermore, the
set FN is a subset of the natural numbers and is defined as
FN := {1, . . . , N} for any given number N ∈ N.

Distributed target object detection can be formally
modeled by a binary hypothesis testing problem with



hypotheses H0 and H1 indicating absence and presence of
the object, respectively. At any instance of time a network of
N ∈ N, N ≥ 2 independent and spatially distributed sensors
obtains random observations X1, . . . , XN ∈ R as shown in
Fig. 1. In the case of energy detection Xn models the received
signal at the receiver of the nth sensor. If a target object is
present, then the received energy is a part of the radiated
energy of the same sensor which is reflected from the object’s
surface. We refer to this communication channel, between
the sensors and the target object, as the first communication
link and denote all dedicated parameters by an upper index
R. The random observations X1, . . . , XN are assumed to
be conditionally independent for each of the underlying
hypotheses, i.e., the joint conditional probability density
function of all the observations factorizes according to

fR(X | Hk) :=
∏N

n=1
fRn (Xn | Hk), ∀k ∈ {0, 1}, (1)

where X denotes the sequence of random variables
X1, . . . , XN . In general, the observations are not identically
distributed because the SNs have different distances dRn
from the target object and their radiated powers PRn are also
different. Therefore, the signal-to-noise ratio (SNR) varies
between the SNs. Due to the distributed nature of the problem,
the nth sensor Sn performs independent measurements and
processes its respective observation Xn by generating a local
decision Un := θn(Xn),∀n ∈ FN , which depends only on its
own observation and not on the observations of other SNs.
After deciding locally each sensor transmits its decision to a
fusion center located at a remote location. The communication
between the SN and the fusion center is determined by the
corresponding distance dCn as well as by the transmission
power PCn of the same SN. We refer to this communication
channel, between the SNs and the fusion center, as the second
communication link and denote all dedicated parameters
by an upper index C. Furthermore, we assume that both
communication channels are non-fading channels without
multipath propagation and that all data transmissions are
affected only by additive white Gaussian noise (AWGN). We
disregard time delays within all communication and assume
synchronized data transmission. We use two distinct pulse-
shift patterns for each SN to distinguish the first and the second
communication link as described in [11]. Each pattern has to
be suitably chosen in order to suppress inter-user interference
at each receiver. Hence, the N received signals at the fusion
center are uncorrelated and are assumed to be conditionally
independent for each of the underlying hypotheses. These
received random signals correspond to the local decisions
U1, . . . , UN and are labeled by X̃1, . . . , X̃N ∈ R. Their joint
conditional probability density function factorizes according to

fC(X̃ | Hk) :=
∏N

n=1
fCn (X̃n | Hk), ∀k ∈ {0, 1}, (2)

where X̃ denotes the sequence of random variables
X̃1, . . . , X̃N . In general, these observations are – similar to the
observations X1, . . . , XN – not identically distributed because
of variation in distances dCn as well as that of the radiated

powers PCn . Unlike the local decision rules the global decision
rule U0 := θ0(X̃1, . . . , X̃N ) depends on all observations in
order to increase the overall detection probability.

All described assumptions are necessary in order to obtain
an ideal framework for analyzing the problem of power
allocation without studying problems of different detection
methods in specific systems and their settings.

A. Local detection rules

The local decision and detection rules θn are binary
mappings of the kind θn : R→ {0, 1},∀n ∈ FN . In this work
hard-decision rules are used for performing local detection
given by

θn(Xn = xn) =

{
0 if xn < τn,

1 if xn ≥ τn,
∀n ∈ FN , (3)

where the thresholds τn ∈ R are suitably chosen. The thresh-
olds must be calculated separately for every SN in order to per-
form optimal detection. They depend on the prior probabilities
of the hypotheses. These values can be calculated by a subop-
timal approach which is described in Sec. III-A. In this way,
every SN has a local probability of correct decision given by

Pr(Un = k | Hk) =

{
Pr(Xn < τn | Hk) if k = 0,

Pr(Xn ≥ τn | Hk) if k = 1,
(4)

for all n ∈ FN .

B. Fusion of local decisions and global detection rule

Under the assumption of conditionally independent local de-
cisions U1, . . . , UN at the SNs and independent noisy commu-
nication channels the optimal fusion rule at the fusion center,
under the Bayesian-hypotheses-test criterion, is given by

U0 = θ0(X̃ = x̃) = argmax
k∈{0,1}

(
πk f

C(x̃ | Hk)
)
, (5)

where πk := Pr(Hk) with π0 + π1 = 1 denotes the prior
probability of hypothesis Hk. We use this formula to detect the
target object. However, in order to optimize the allocation of
the total power between the SNs we have to consider the over-
all detection probability. Therefore, we consider two disjoint
regions R0 :=

{
x̃ ∈ RN | π0 fC(x̃ | H0) ≥ π1 fC(x̃ | H1)

}
and R1 :=

{
x̃ ∈ RN \ R0

}
. According to [1] the expected

value of correct detection is given by

Pc := Pr(x̃ ∈ R0, H0) + Pr(x̃ ∈ R1, H1), (6)

which in general can not be analytically evaluated. Therefore,
the previous formula can not be used to optimize the
allocation of the total power analytically. Consequently, we
choose a different approach for the optimization which is
described in Sec. III-B.

C. Ultra-wide bandwidth sensor nodes

In Fig. 2 the system model of the considered impulse-radio
UWB (IR-UWB) sensor nodes with pulse position modulation
(PPM) is shown. The transmitter generates two streams of
data symbols sCn (t) and sRn (t). The symbol stream sCn is
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Fig. 2. System model of sensor node Sn with circulator and antenna.

used to establish the communication to the fusion center.
This stream transmits the data symbols un(i), which are
generated for the time index i by the local decision algorithm
defined in (3). The transmission power PCn of this stream is
variable in order to adjust transmission power and to enable
distributed power allocation.

The symbol stream sRn establishes the radiation to the target
object and uses always the same data symbol. Its transmission
power PRn is also variable. In order to increase the avail-
able power range at every SN, time-division multiple-access
(TDMA) method is used to separate both streams into different
time slots and to periodically share the same power amplifier.

In order to eliminate collisions due to multiple access, each
user stream is assigned to a distinctive time-shift pattern after
passing through the blocks hCn (t) and hRn (t). Their transfer
functions are based on time-hopping sequences [11].

After superposition of both streams a monocyclic pulse
shape filter w(t) limits the bandwidth of the signal. This
filter has to fulfill the Nyquist intersymbol interference (ISI)
criterion in order to neglect the intersymbol interferences.

When this superposition is transmitted, a part of the radiated
signal sRn will be reflected from the target surface back to the
antenna. The received signal will pass through the matched-
filter w(−t) and will be decoded from its time-hopping
sequence by hRn (−t). The additive noise signal bRn (t) will pass
as well through both filters at the receiver. We denote the noise
power by Pnoise. If all receiver components are linear, then we
can define the received power as

P̃Rn,k := kPRn
αR

n

g2(2dRn )
, ∀k ∈ {0, 1},∀n ∈ FN , (7)

where the transmitted power is weighted by the product of
the factors αRn > 0 and g−2(2dRn ). The factor αRn includes the
radar cross section, the influence of the antenna, the impacts
of the filters, and all additional attenuation of the transmitted
power. The path loss function g depends on the assumed com-
munication channel and is usually an increasing function of the
distance between transmitter and receiver. Here, the factor of
two in the distance results from that back and forth transmis-
sion between the transceiver and the object. The factor k de-
scribes the absence or the presence of the target object. There-
fore, the received power depends on the underlying hypothesis.

Due to the Gaussian distribution of the noise each sample
is also a Gaussian random variable, which is conditionally
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Fig. 3. System model of the fusion center.

distributed according to

fRn (Xn = xn | Hk) :=
1√

2πPnoise
exp

(
−
(
xn−
√
P̃R

n,k

)2
2Pnoise

)
(8)

for all n ∈ FN and k ∈ {0, 1}. The local probabilities for false
alarm as well as the local probabilities for correct decision (4)
can be computed by the equations

π̃n,0 := Pr(Un = 1 | H0) =
1
2 erfc

(
τn√
2Pnoise

)
and

π̃n,1 := Pr(Un = 1 | H1) = 1− 1
2 erfc

(√
P̃R

n,1−τn√
2Pnoise

) (9)

for all n ∈ FN , respectively. Here, the mapping erfc(z) de-
notes the complementary error function of z.

D. Fusion center

After radiation of the stream sCn by the SN Sn, this signal
is attenuated distance dependently and reaches the antenna at
the fusion center as depicted in Fig. 3. The received signal is
matched-filtered and decoded from its time-hopping sequence.
As described in [11] we need a further filter, denoted by
v(t), in order to increase the Euclidian distance between both
transmitted symbols. Thus, the received user power from the
nth SN is given by

P̃Cn := PCn
αC

n

g2(dCn )
, ∀n ∈ FN , (10)

where we assume that the path loss function is the same as
before. This power is independent of the underlying hypothesis
because the data stream has the same power for both kinds of
transmitted data symbols.

The additive noise signal bCn (t) will also pass through all
the filters. We assume that the noise spectral density at the
fusion center is the same as at the SNs. Due to similarity in
architecture of the fusion center and the SNs the noise power
of each stream is equal to Pnoise.

Due to the Gaussian distribution of noise each sample is also
a Gaussian random variable, which is conditionally distributed
according to

fCn (X̃n = x̃n | Hk) :=
π̃n,k√
2πPnoise

exp

(
−
(
x̃n−
√
P̃C

n

)2
2Pnoise

)
+

1−π̃n,k√
2πPnoise

exp

(
−
(
x̃n+
√
P̃C

n

)2
2Pnoise

) (11)

for all k ∈ {0, 1} and for all n ∈ FN .
Because of the convex superposition of Gaussian

distributions it is difficult to use (11) with the properties



of (2) to optimize the distributed power allocation. Bounds,
such as the Bhattacharyya bound [2], are also difficult to use
due to multidimensional nature of (2). Therefore, we propose
an applicable technique which is motivated by concepts of
information theory and is described in the next section.

III. SUBOPTIMAL ALLOCATION OF POWER

In this section we motivate and present an approach to
suboptimally allocate transmission power to the radar and the
communication task. The objective is to maximize the overall
detection probability, given a limited total transmission power
Ptot that can be arbitrarily allocated to the radar task as well
as to the communication task. A direct solution to this prob-
lem does not exist, since there are no analytical expressions
for the overall detection probability (6) available. Instead,
we independently maximize the mutual information of both
communication channels by maximizing the corresponding
channel capacities in order to determine the power allocation.
The motivation for this approach is the fact that for an error-
free data communication at a certain data rate a specific SNR
is required. The existence of a unique channel-code sequence
is hereby an essential assumption [3]. This means that theo-
retically it is possible to transmit the observation of the target
object almost without error up to nearly a limit of the channel
capacity. In this case we can separate the problem of power
allocation from object detection because data communication
does not affect the detection of the target object.

Note that this theoretical concept can not be realized in
practice. However, we apply this concept as a heuristical
method in this work.

A. Threshold calculation

For the optimization of the thresholds in Sec. II-A, in
order to increase the overall detection probability, the analytic
solution of (6) is needed. Due to the fact that this explicit
form for the overall detection probability is unknown and
due to the separation of the data communication from the
detection task we can propose the following simple approach
to calculate the thresholds.

We increase the probability of correct decision of each SN
independently to achieve suboptimal values for the thresholds;
Thus, the overall detection probability is increased, too. Ac-
cording to equations (4) and (9) the local probability of correct
decision is given by∑2

k=1
Pr(Hk) Pr(Un = k | Hk)

= 1
2

[
1 + π1 erf

(√
P̃R

n,1−τn√
2Pnoise

)
+ π0 erf

(
τn√
2Pnoise

)]
,

(12)

which has to be maximized. Here, the mapping erf(z) denotes
the error function of z. Its solution can be explicitly found by
using differential calculus and this is identical to that which
is obtained by using the Bayesian-hypotheses-test criterion.
This is given by

τn =
√
P̃Rn,1 ·

[
1
2 −

Pnoise

P̃R
n,1

ln
(
π1

π0

)]
, ∀n ∈ FN . (13)

B. Channel capacity-based power allocation

For the minimization of error rate we set the bit-error
probabilities of both communication channels equal. This leads
to same error probabilities on both sides for higher SNR
values. The expected bit-error probability of the first link is
the one for unipolar data transmission and that of the second
link is the one for bipolar data transmission. Hence, for higher
SNR values the equation

1
2 erfc

(√
P̃R

n,1

8Pnoise

)
= 1

2 erfc

(√
P̃C

n

2Pnoise

)
, ∀n ∈ FN , (14)

has to be solved in order to find the relationship between
the powers. After calculation and usage of the equations (7)
and (10) we obtain the analytical result

PCn = PRn ·
αR

n

4αC
n

g2(dCn )
g2(2dRn )

, ∀n ∈ FN . (15)

In the next step we increase the overall mutual information
of the first link by maximization of the cumulative channel
capacity subject to the total given power of the sensor network.
Then the optimization problem is given by

maximize
PR

1 ,...,P
R
N

∑N

n=1

1
2 log

[
1 +

PR
n α

R
n

4Pnoiseg2(2dRn )

]
(16)

subject to
∑N
n=1 P

C
n + PRn ≤ Ptot. It has to be considered

that the sum of concave functions is also concave and that
the arguments of the logarithms are linear functions of the
powers. The domain of the constraints is a closed convex
set and, therefore, only one global maximum of the problem
exists. This maximum can be explicitly found by using the
method of Lagrange multipliers which is equivalent to the
water-filling power allocation result [3]. This result is given by

PRn = Pnoise
4g2(2dRn )

αR
n
·max

(
0, λ

βn
− 1
)
, ∀n ∈ FN , (17)

where the factor βn is defined by βn :=
4g2(2dRn )

αR
n

+
g2(dCn )
αC

n
.

For the following equations we assume that the quantities
given by βn are ordered in an increasing manner. Then the
constant λ is a value specified by

βÑ ≤ λ ≤
1
Ñ

[
Ptot
Pnoise

+
∑Ñ

n=1
βn

]
, (18)

where the index Ñ with 1 ≤ Ñ ≤ N is the largest integer
number for which the inequality

∑Ñ
n=1(βÑ − βn) ≤ Ptot

Pnoise

holds. From (15) and (17) the allocated power for the second
channel is determined as

PCn = Pnoise
g2(dCn )
αC

n
·max

(
0, λ

βn
− 1
)
. (19)

This allocation has the following interpretation. The SN Sn
with the lowest βn gets the largest part of the total power
because its communication channels are possibly the best due
to the low distances. Therefore, the observation of the target
object is less interfered by noise and consequently results
in better data communication. SNs with higher distances get
smaller parts of the total power and some of them do not get
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Fig. 4. Verification of proposed power allocation between the two commu-
nication links of a single sensor node network.
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Fig. 5. Verification of proposed power allocation between two sensor nodes.

any power at all. They participate neither in the data commu-
nication nor in the detection of the target object. Their infor-
mation reliability is too poor to be considered for data fusion.
More and more SNs will become active by increasing the total
power. Then the overall detection probability increases because
more correct information is provided by the observations.

IV. NUMERICAL RESULTS AND CONCLUSIONS

In this section we present some numerical results obtained
by applying the proposed optimization method from Sec. III.
As observation model we use the constant signal in Gaussian
noise as described in Sec. II with equal prior probabilities
π0 = π1 = 1

2 . Furthermore, the path-loss function is modeled
by line-of-sight propagation.

The verification of the proposed power allocation between
both communication links of one SN is shown in Fig. 4. The
overall error probability of detection increases for higher SNR
values for the case where the power of one link is reduced
by 10% and at the same time the power of the other link
is stepped up by this 10%. This is due to the assumptions
of equation (14). This result shows that the proposed power
allocation between both communication links is optimal for
higher SNR values.

In Fig. 5 another verification of the power allocation
between two SNs is shown. The overall error probability
of detection decreases if we decrease the power of the SN,

10.1 14.1 18.1 22.1 26.1 30.1 34.1 38.1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR/dB

E
rr

or
p
ro

b
ab

il
it

ie
s

 

 

Proposed power allocation
Bit error-rate
Uniform power allocation

Fig. 6. Comparison of proposed power allocation to a uniform power
allocation in a network of ten sensor nodes.

which has the smallest part of the total power, by 10% and
allocate this amount of power to the other SN. This result
shows that the proposed power allocation between the SNs is
only suboptimal.

As shown in Fig. 6 the proposed method yields a better
detection probability in comparison to a uniform power
allocation, where a network of ten SNs is used. In particular,
it is shown that the same overall detection probability can be
achieved with much lower transmission energy by using an
efficient power allocation method. Furthermore, the bit-error
probability of the SN with the highest part of the total power
is also shown. The detection accuracy is better than the best
bit-error probability for higher SNR values, which affirms
the gain of data fusion and illustrates the feasibility of object
detection in this kind of sensor networks.
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