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Abstract—This publication analyzes the power allocation prob-
lem for a distributed wireless sensor network which is based on
ultra-wide bandwidth communication technology. The network
is used to classify target objects. In the considered scenarios, the
absence, the presence, or the type of an object is observed by the
sensors independently. Due to noisy communication channels, the
interfered observations are fused into a reliable global decision
in order to increase the overall classification probability. An
approach based on information theory that aims at maximization
of the mutual information is employed. It enables the analytical
allocation of the given total power to the sensor nodes so as
to optimize the overall classification probability. Furthermore,
we demonstrate the feasibility of object classification by using
the introduced power allocation method in ultra-wide bandwidth
signaling and energy-efficient systems.

I. INTRODUCTION

In this essay we analyze the power allocation problem for
a distributed wireless sensor network with sensor nodes (SN)
based entirely on ultra-wide bandwidth (UWB) technology.
The network is used to perform object classification, where
the kind of an object is observed by the sensors independently.
UWB signals can be used for data communication between
the SNs as well as for radar applications. The approach of
misemploying the communication sensors as radar sensors,
such that the data transmission is misused as a radar beam
in order to classify a target object, helps in realizing an
energy-efficient radar system with compact and cheap SNs.
A further advantage of such radar systems is the fulfillment
of major requirements of wireless sensor networks. This
exploitation presupposes that the integration of sensing
functionality into usual UWB sensors is implementable easily
without the usage of any additional hardware units. Since
the compact and low complexity UWB sensors are limited
in power and communication capabilities, the classification
performance of a single sensor is restricted compared to
that of a common complex radar system. To obtain an
appropriate overall system performance we consider the case
of distributed classification, where the local observations of
the sensors are fused into a reliable global decision. Due to
noisy communication channels and differences in distances
between the object and the sensors, both, the observations and
their transmissions are unequally interfered. One simple way
to suppress noise interference is to increase the power of each
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Fig. 1. System model of the distributed wireless sensor network.

SN. But if the total power of the entire network is limited,
then power allocation procedures are needed in order to
increase the overall classification probability. In general, for a
Bayesian-hypotheses-test criterion the mathematical function
of the overall classification probability cannot be analytically
evaluated [1]. This limits the usability of this criterion for
analytical optimization of the power allocation. Bounds, such
as the Bhattacharyya bound [2], are also difficult to use for
optimizing multidimensional problems. Therefore, we employ
an information theoretic approach [3] which is based on
mutual information maximization. This approach yields a
simple however suboptimal analytical solution for the power
allocation problem. Hereby, we show the feasibility of object
classification in UWB signaling and energy-efficient systems.

The origin of research on distributed detection has been the
attempt to fuse signals of different radar devices [4]. Currently,
distributed detection is usually discussed in the context of
wireless sensor networks, where the sensor unit of the nodes
might be based on radar technology [5]–[7]. In a recent pub-
lication [8], the power allocation problem is analyzed where a
sensor network is used to detect target objects. Other applica-
tions for UWB radar systems, which require or benefit from
the detection and classification capabilities, are for example
localization and tracking [9] or through-wall surveillance [10].
The physical layer design for an integrated UWB radar net-
work that utilizes OFDM technology was analyzed in [11].

II. OVERVIEW AND SYSTEM DESCRIPTION

Throughout this paper we denote the set of natural, real,
and complex numbers by N, R, and C, respectively. Note that



the set of natural numbers does not include the element zero.
Furthermore, we use the subset FN ⊆ N which is defined
as FN := {1, . . . , N} for any given natural number N . The
mathematical operations |z| and |z| denote the absolute value
of a real or complex-valued number z and the Euclidian length
of a real or complex vector z, respectively.

Distributed target object classification can be formally
modeled by a multiple hypotheses testing problem with hy-
potheses Hk∀k ∈ FK for a specified number K ∈ N,K ≥ 2
of different objects. We assume that all objects have the
same size, shape, alignment, and position. They only differ in
material and are classified by their complex-valued reflection
coefficients rk ∈ C, which are ordered in a strictly increasing
manner 0 ≤ |r1| < · · · < |rK | ≤ 1. Therefore, the reflection
coefficients are the only recognition features in this work.
Generally, this assumption is not realistic, but, this case
describes an ideal scenario for increasing the classification
probability by performing a power allocation and is not really
suitable for analyzing the problems of manifoldness.

At any instance of time a network of N ∈ N independent
and spatially distributed sensors, as shown in Fig. 1, obtains
random observations X1, . . . , XN ∈ R. In the case of energy
classification Xn models the received signal at the receiver of
the nth sensor. If a target object is present, then the received
energy is a part of the radiated energy of the same sensor
which is reflected from the object’s surface and is weighted
by its reflection coefficient. We refer to this communication
channel, between the sensors and the target object, as the
first communication link and denote all dedicated parameters
by the superscript R. The random observations X1, . . . , XN

are assumed to be conditionally independent for each of the
underlying hypotheses, i.e., the joint conditional probability
density function of all the observations factorizes according to

fR(X | Hk) :=

N∏
n=1

fRn (Xn | Hk), ∀k ∈ FK , (1)

where X denotes the sequence of random variables
X1, . . . , XN . In general, the observations are not identically
distributed because the SNs have different distances dRn
from the target object and their radiated powers PRn are also
different. Therefore, the signal-to-noise ratio (SNR) varies
between the SNs. Due to the distributed nature of the problem,
the nth sensor Sn performs independent measurements and
processes its respective observation Xn by generating a local
decision Un := θn(Xn)∀n ∈ FN , which depends only on its
own observation and not on the observations of other SNs.
After deciding locally each sensor transmits its decision to a
fusion center located at a remote location. The communication
between the SN and the fusion center is determined by the
corresponding distance dCn as well as by the transmission
power PCn of the same SN. We refer to this communication
channel, between the SNs and the fusion center, as the second
communication link and denote all dedicated parameters
by the superscript C. Furthermore, we assume that both
communication channels are non-fading channels and that

all data transmissions are affected only by additive white
Gaussian noise (AWGN). We disregard time delays within all
transmissions and assume synchronized data communication.
We use two distinct pulse-shift patterns for each SN in
order to distinguish its first and second communication link
from the communication links of other SNs as described
in [12]. Each pattern has to be suitably chosen in order to
suppress inter-user interference at each receiver. Hence, the
N received signals at the fusion center are uncorrelated and
are assumed to be conditionally independent for each of
the underlying hypotheses. These received random signals
correspond to the local decisions U1, . . . , UN and are mapped
to X̃1, . . . , X̃N ∈ RK . Their joint conditional probability
density function factorizes according to

fC(X̃ | Hk) :=

N∏
n=1

fCn (X̃n | Hk), ∀k ∈ FK , (2)

where X̃ denotes the sequence of random vectors
X̃1, . . . , X̃N . In general, these observations are – similar to the
observations X1, . . . , XN – not identically distributed because
of variation in distances dCn as well as that of the radiated
powers PCn . Unlike the local decision rules the global decision
rule U0 := θ0(X̃1, . . . , X̃N ) depends on all observations in
order to increase the overall classification probability.

All described assumptions are necessary in order to obtain a
framework suited for analyzing the power allocation problem
without studying problems of different classification methods
in specific systems and their settings.

A. Local classification rules

The local decision and classification rules θn are map-
pings of the kind θn : R→ FK ,∀n ∈ FN . In this work hard-
decision rules are used for performing local classification given
by

θn(Xn = xn) = k, if τn,k < xn ≤ τn,k+1, k ∈ FK (3)

for all n ∈ FN , where the thresholds τn,k ∈ R are suitably
chosen. The thresholds must be calculated separately for every
SN in order to perform optimal classification. They depend on
the prior probabilities of the hypotheses. Their values can be
calculated by a suboptimal approach, which is described in
Section III-A. In this way, every SN has a local probability of
correct decision given by

Pr(Un = k | Hk) = Pr(τn,k < Xn ≤ τn,k+1 | Hk) (4)

and a local probability of false decision given by

Pr(Un 6= k | Hk) = 1− Pr(Un = k | Hk) (5)

for all k ∈ FK and for all n ∈ FN .

B. Fusion of local decisions and global classification rule

The local decisions U1, . . . , UN at the SNs are conditionally
independent due to uncorrelated and independent noisy com-
munication channels. By applying the Bayesian-hypotheses-
test criterion the optimal fusion rule at the fusion center is
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Fig. 2. System model of the nth sensor node with circulator and antenna.

given by

U0 = θ0(X̃ = x̃) = argmax
k∈FK

(
πk f

C(x̃ | Hk)
)
, (6)

where πk := Pr(Hk) with
∑K
k=1 πk = 1 denotes the prior

probability of hypothesis Hk. We use this formula to classify
the target object. However, in order to optimize the allocation
of the total power to the SNs we have to consider the overall
classification probability. Therefore, we consider K pairwise
disjoint regions R1, . . . ,RK with

Rk :=
{
x̃ ∈ RK×N | πk fC(x̃ | Hk) ≥ πl fC(x̃ | Hl)

}
(7)

for all k, l ∈ FK with l 6= k. According to [1] the expected
value of correct classification is given by

Pc :=

K∑
k=1

Pr(x̃ ∈ Rk, Hk), (8)

which in general cannot be analytically evaluated. Therefore,
the previous formula cannot be used to optimize the allocation
of the total power analytically. Consequently, we choose a
different approach for the optimization which is described in
Section III-B.

C. Ultra-wide bandwidth sensor nodes

In Fig. 2 the system model of the considered impulse-radio
UWB (IR-UWB) sensor nodes with pulse position modulation
(PPM) is shown. The transmitter generates two streams of data
symbols sCn (t) and sRn (t).

The symbol stream sCn is used to transmit the local decisions
un(i) ∈ FK at the time index i to the fusion center, which
are generated by the algorithm defined in (3). We describe the
data symbols by Dirac delta functions δ

(
t − [un(i) − 1]∆

)
,

which are shifted pulses on the time axis. Their alignment is
determined by the modulation index ∆. We assume that the
product K∆ is much smaller than the symbol duration. Thus,
K different data symbols can be transmitted to the fusion
center. The transmission power PCn of this stream is variable
in order to adjust transmission power and to enable distributed
power allocation.

The symbol stream sRn establishes the radiation to the
target object and uses always the same data symbol. Its
transmission power PRn is also variable. In order to increase
the available power range at every SN, time-division multiple-
access (TDMA) method is used to separate both streams into

different time slots and to periodically share the same power
amplifier.

In order to eliminate collisions due to multiple access, each
user stream is assigned to a distinctive time-shift pattern after
passing through the blocks hCn (t) and hRn (t). Their transfer
functions are based on time-hopping sequences [12].

After superposition of both streams a monocyclic pulse
shape filter w(t) limits the bandwidth of the signal. This
filter has to fulfill the Nyquist intersymbol interference (ISI)
criterion in order to avoid intersymbol interferences.

When this superposition is transmitted, a part of the radiated
signal sRn will be reflected from the target surface back
to the antenna. The received signal will pass through the
matched-filter w(−t) and will be decoded from its time-
hopping sequence by hRn (−t). The additive noise signal bRn (t)
will pass as well through both filters at the receiver. We
denote the corresponding noise power by Pnoise. If all receiver
components are linear, then we can describe the received
power by

P̃Rn|k := PRn
αR

n |rk|
2

g2(2dRn )
, ∀k ∈ FK ,∀n ∈ FN , (9)

where the transmitted power is weighted by the product of the
factors αRn > 0, |rk|2, and g−2(2dRn ). The factor αRn includes
the radar cross section, the influence of the antenna, the
impacts of the filters, and all additional attenuation of the
transmitted power. Due to the reflection coefficient rk of the
target object the received power depends on the underlying
hypothesis. The path loss function g depends on the assumed
multipath propagation channel and is usually an increasing
function of the distance between transmitter and receiver. Here,
the factor of two in the distance results from that back and
forth transmission between the transceiver and the object. The
ratio of P̃Rn|k and Pnoise is the observed conditional SNR at the
receiver and is given by

γRn|k :=
PR

n

Pnoise
· α

R
n |rk|

2

g2(2dRn )
, ∀k ∈ FK ,∀n ∈ FN . (10)

Due to the Gaussian distribution of the noise each sample
is also a Gaussian random variable, which is conditionally
distributed according to

fRn (Xn = xn | Hk) := 1√
2πPnoise

exp

(
−
(
xn−
√
P̃R

n|k

)2
2Pnoise

)
(11)

for all n ∈ FN and for all k ∈ FK . The local decision prob-
abilities Pr(Un = l | Hk), see (4) and (5), can be computed
by solving the integral

π̃n,l|k := Pr(Un = l | Hk) =

τn,l+1∫
τn,l

fRn (xn | Hk) dxn

= 1
2

[
erf

(√
P̃R

n|k−τn,l
√
2Pnoise

)
+ erf

(
τn,l+1−

√
P̃R

n|k√
2Pnoise

)] (12)

for all k, l ∈ FK and for all n ∈ FN . Here, the mapping erf(z)
denotes the error function of z.
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Fig. 3. System model of the fusion center.

D. Fusion center

After radiation of the stream sCn by the SN Sn, the signal is
attenuated depending on the distance and it reaches the antenna
at the fusion center as depicted in Fig. 3. The received signal is
matched-filtered and decoded from its time-hopping sequence.
Then a data splitter v(t) is used to split the received signal into
a K-dimensional vector space. This is necessary in order to
retain the Euclidian distances between all transmitted symbols
and achieve a higher classification probability. This filter
is mathematically implemented as

∑K
k=1 ek δ

(
t− (k − 1)∆

)
,

where ek is the standard basis vector of the K-dimensional
space that points in the kth direction. Therefore, the received
signals X̃1, . . . , X̃N ∈ RK are K-dimensional vectors. This
new approach extends the method given by [12].

In case of additive zero-mean noise and due to the assump-
tions of w(t) each vector sample of the received signal has
the expected value of

mn|l := E
(
X̃n | Un = l

)
=

√
PCn

αC
n

g2(dCn )
· el (13)

for all l ∈ FK and for all n ∈ FN , which depends on the
transmitted symbol Un = l. Thus, the received power from
the nth SN is given by

P̃Cn := PCn
αC

n

g2(dCn )
, ∀n ∈ FN , (14)

where we assume that the path loss function is the same as for
the first communication link. The power P̃Cn is independent
of the underlying hypothesis because the data stream sCn has
the same power for all kinds of transmitted data symbols.

The additive noise signal bCn (t) will also pass through all
the filters. We assume that the noise spectral density at the
fusion center is the same as at the SNs. Due to similarity in
architecture of the fusion center and the SNs the noise power
in each dimension of each stream is equal to Pnoise. Because
of the whiteness of noise the interferences are uncorrelated
in each dimension of each stream. Therefore, the noise co-
variance matrix is given by the product Pnoise · IK . Here, IK
denotes the identity matrix of size K.

Similar to (10) we define the observed SNR for each data
stream at the fusion center and denote it by

γCn :=
PC

n

Pnoise
· αC

n

g2(dCn )
, ∀n ∈ FN . (15)

Due to the Gaussian distribution of noise each vector sample
is a Gaussian random vector, which is conditionally distributed

according to

fCn (X̃n | Hk) :=

K∑
l=1

π̃n,l|k
(2πPnoise)K/2 exp

(
− (x̃n−mn|l)

T(x̃n−mn|l)

2Pnoise

)
(16)

for all k ∈ FK and for all n ∈ FN , where the operator zT

denotes the transpose of any vector z.
Because of the convex superposition of multivariate Gaus-

sian distributions it is difficult to use (16) with the properties
of (2) to optimize the distributed power allocation. Bounds
such as the Bhattacharyya bound [2] are also difficult to use
due to the multidimensional nature of (2) and (16). Therefore,
we propose an applicable technique which is motivated by
concepts of information theory and is described in the next
section.

III. SUBOPTIMAL ALLOCATION OF THE TOTAL POWER

In this section, we motivate and present an approach to
suboptimally allocate transmission power to the radar and to
the communication tasks. The objective is to maximize the
overall classification probability given a limited total transmis-
sion power Ptot, which can be arbitrarily allocated to the radar
task as well as to the communication task. A direct solution to
this problem does not exist, since no analytical expression for
the overall classification probability (8) is available. Instead,
we independently maximize the mutual information of both
communication channels to increase the information flow and
in order to determine the power allocation. The motivation for
this approach is the separation of the power allocation problem
from the object classification procedure. Because in this case
the data communication does not affect the classification of
the target object.

Note that this theoretical concept is not realistic. However,
we apply this concept as a heuristical method in this work.

A. Threshold calculation

For the optimization of the thresholds in Section II-A in
order to increase the overall classification probability the
analytic evaluation of (8) is needed. Due to the fact that
the explicit form for the overall classification probability is
unknown and due to the separation of the data communication
from the classification task we propose the following simple
approach to calculate the thresholds.

We increase the probability of correct decision of each SN
independently to achieve suboptimal values for the thresholds.
Thus, the overall classification probability should be increased
as well. According to equations (4) and (12) the local proba-
bility of correct decision, which has to be maximized, is given
by

K∑
k=1

Pr(Hk) Pr(Un = k | Hk)

=

K∑
k=1

πk

2

[
erf

(√
P̃R

n|k−τn,k
√
2Pnoise

)
+ erf

(
τn,k+1−

√
P̃R

n|k√
2Pnoise

)]
. (17)



Its solution can be found explicitly by using differential
calculus. The corresponding result is identical to the one
obtained by using the Bayesian-hypotheses-test criterion. It
is given by

τn,k =


inf(In,k) if In,k 6= ∅, k ∈ FK ,
τn,k+1 if In,k = ∅, k ∈ FK ,
∞ if k = K + 1,

(18)

for all n ∈ FN , where the function inf(In,k) is the infimum
of the interval In,k that is defined by

In,k :=
{
x ∈ R | πk fRn (x | Hk) > πl f

R
n (x | Hl),∀l 6= k

}
.

(19)

B. Mutual information-based power allocation

For the maximization of the information flow we set the
mutual information of both communication channels equal.
This leads to the same symbol error probabilities on both sides
for low SNR values. For each SN an upper bound for the
mutual information of its first and second link can simply be
calculated. The identity of obtained bounds

1
2 log

[
1+

PR
n α

R
n (|rK |−|r1|)2

4Pnoiseg2(2dRn )

]
= K

2 log
[
1+

PC
n α

C
n (K−1)

Pnoiseg2(dCn )K2

]
(20)

has to be computed in order to find the relationship between
the powers for all n ∈ FN . After calculation and usage of the
approximation K

√
1 + x ≈ 1 + x

K for small values of x we
obtain the analytical relationship

PCn = PRn ·
αR

n

αC
n

g2(dCn )
g2(2dRn )

K
K−1

(|rK |−|r1|)2
4 , ∀n ∈ FN . (21)

In the next step we increase the overall mutual information by
maximization of the cumulative mutual information subject
to the given total power of the sensor network. Then the
optimization problem is given by

maximize
PR

1 ,...,P
R
N

N∑
n=1

1
2 log

[
1 +

PR
n α

R
n (|rK |−|r1|)2

4Pnoiseg2(2dRn )

]
(22)

subject to
∑N
n=1 P

C
n + PRn ≤ Ptot. It has to be considered that

the sum of concave functions is also concave and that the
arguments of the logarithms are linear functions of the powers.
Furthermore, the domain of the feasible set is a closed convex
set and, therefore, only one global maximum of the problem
exists. This maximum can be explicitly calculated by using
the method of Lagrange multipliers which is equivalent to the
water-filling power allocation result [3]. The result is given by

PRn = Pnoise
g2(2dRn )
αR

n

4
(|rK |−|r1|)2 ·max

(
0, λ

βn
− 1
)

(23)

for all n ∈ FN , where the factor βn is defined by

βn :=
g2(2dRn )
αR

n

4
(|rK |−|r1|)2 +

g2(dCn )
αC

n

K
K−1 . (24)

For the following equations we assume that the factors βn are
ordered in an increasing manner. Then the water-filling level
λ is a value specified by the inequality

βÑ < λ ≤ 1
Ñ

[
Ptot
Pnoise

+

Ñ∑
n=1

βn

]
, (25)

where the number Ñ with 1 ≤ Ñ ≤ N is a suitably chosen
integer value for which the inequality

Ñ∑
n=1

(βÑ − βn) < Ptot
Pnoise

(26)

holds. From (21) and (23) the allocated power for the second
channel is determined as

PCn = Pnoise
g2(dCn )
αC

n

K
K−1 ·max

(
0, λ

βn
− 1
)
. (27)

This allocation has the following interpretation. The SN Sn
with the lowest βn gets the largest part of the total power
because its communication channels are possibly the best due
to the low distances. Therefore, the observation of the target
object is less interfered by noise and consequently results
in better data communication. SNs with higher distances get
smaller parts of the total power and some of them do not get
any power at all. The last ones participate neither in the data
communication nor in the classification of the target object.
Their information reliability is too poor to be considered
for data fusion. More and more SNs will become active by
increasing the total power. Then the overall classification prob-
ability increases because more correct information is provided
by the observations.

IV. NUMERICAL RESULTS

In this section we present some numerical results obtained
by applying the proposed optimization method from Sec-
tion III. We simulate target objects with equal prior proba-
bilities πk = 1

K ∀k ∈ FK in sensor networks with different
settings as described in Section II. In all results, we consider
three different kinds of target objects with reflection coeffi-
cients chosen as |r1| = 0, |r2| = 1

2 , and |r3| = 1. Furthermore,
the path loss function is modeled as line-of-sight propagation.
The ratio SNR = 10dB log

(
Ptot
Pnoise

)
, instead of received SNRs,

is depicted on the abscissa of all figures.

8 12 16 20 24 28
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR/dB

P
ro

b
ab

il
it
y

of
cl

as
si

fi
ca

ti
on

er
ro

r

 

 

Proposed power allocation
+30% to first link
+10% to first link
+10% to second link

Fig. 4. Verification of proposed power allocation between the two commu-
nication links of a single sensor node network.

The verification of the proposed power allocation between
both communication links of a single SN is shown in Fig. 4.



The overall error probability of the classification increases for
higher SNR values for the case where the allocated power of
one link is reduced by 10% and at the same time the power of
the other link is stepped up by this 10%. When we reallocate
a power amount of 10% − 30% to both links in an inverse
manner, then the classification probability remains almost
valid. This result shows that the proposed method allocates
the given total power nearly optimal to both communication
links, especially for higher SNR values.
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Fig. 5. Verification of proposed power allocation between two sensor nodes.

In Fig. 5 another verification of the proposed power alloca-
tion is shown, where a network of two SNs is considered. The
overall error probability of the classification decreases if we
decrease the allocated power of the SN, which has the smallest
part of the total power, by 10% and allocate this amount of
power to the other SN. This result shows that the proposed
method assigns the given total power suboptimal to the SNs.
The curves disperse, because of the approximation which has
been used for the equation (21).
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Fig. 6. Comparison of proposed power allocation to a uniform power
allocation in a network of ten sensor nodes.

As shown in Fig. 6 the proposed method yields a better
classification probability in comparison to a uniform power

allocation where a network of ten SNs is considered. In
particular, it is shown that the same overall classification prob-
ability can be achieved with much lower transmission power,
especially for low SNR values, by using an efficient power
allocation method. Furthermore, the symbol-error probability
of the SN with the highest part of the total power is also shown.
The classification accuracy is better than the best symbol-error
probability for higher SNR values, which affirms the gain of
data fusion and illustrates the feasibility of object classification
in this kind of distributed sensor networks.

V. CONCLUSION

The goal of the power allocation is the maximization of the
classification probability in a distributed wireless sensor net-
work, which is based on ultra-wide bandwidth communication
technology. The object classification procedure is based on a
novel two-stage decision process. We have shown that any
given amount of total transmission power can be analytically
allocated to each node of the considered networks by using the
proposed suboptimal method. Numerical results illustrate the
performance of the described algorithm as well as the achieved
classification probability. As the performance of the optimal
power allocation is still unknown, we are not able to state how
close the proposed algorithm approaches the theoretical limit.
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