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Abstract—In this paper, we consider the problem of detecting a
QPSK signal transmitted over a flat-fading channel without using
pilot symbols. Instead, our aim is to approximate ML sequence
detection, which is a nonconvex and discrete problem. To solve
this problem, we use semidefinite relaxation and randomization
to find a solution close to optimal. We propose a new solver based
on the alternative direction method of multipliers to solve this
problem efficiently. To verify this approach, we have developed
and implemented a complete communication framework. We
thoroughly simulated the conventional scheme using pilot-based
channel estimation, as well as our newly proposed method
and compared the achieved bit error rates. For high channel
dynamics, our approach outperforms the pilot based detection,
while saving bandwidth and transmit power.

I. INTRODUCTION

Practical mobile communication systems face the problem
that communication takes place over a time varying channel,
whose realization is a priori unknown to the receiver. To
allow for a coherent detection, which is a prerequisite for a
small receiver complexity, the channel is estimated based on
pilot symbols, periodically introduced into the transmit symbol
sequence. The amount of required pilot symbols increases with
the channel dynamics. For high channel dynamics the pilot
overhead becomes significant, as these pilot symbols consume
transmit power and channel bandwidth. Non-coherent detec-
tion schemes, which do not require a channel estimate, might
be an alternative.

In the present work, the use of non-coherent detection
is studied. One of the main obstacles of non-coherent ML-
detection is that it is quite complex and cannot be solved
in a reasonable amount of time. We tackle this problem by
solving a relaxed version of the detection/demapping problem.
To find a solution close to optimal, we propose to perform
a semidefinite relaxation and use a randomization method to
generate a list of transmit sequences with a high likelihood
and perform demapping based on this list.

There exist various approaches to non-coherent detection.
They mainly try to decrease the complexity of the problem
by using approximations. In [1] and [2], the authors consider
a block based demodulation method. In [3], the authors pro-
pose a multiple differential detector receiver structure which
exploits the statistical characteristics of the fading process. In
[4], the authors reduce the receiver complexity by discretizing
the phase space. The main difference with our work is that
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we search a solution close to optimal for the original problem
using convex optimization instead of solving an approximated
problem exactly. A similar approach, based on convex opti-
mization, is considered in [5]. However, contrary to [5], our
demapper generates soft information as input for the decoder.

The remainder of the present paper is organized as follows.
In Section II, we present the fading channel model we are
using and describe different demapping methods, including the
typical pilot-aided method and our newly proposed method
based on convex optimization. In Section III, we propose a
new convex solver for performing the demapping, compare
the complexity of the approach with existing ones and discuss
parallelization issues. In Section IV, we describe our simu-
lation setup and in Section V we present simulation results.
Finally, Section VI concludes the present paper.

II. SYSTEM MODEL

We consider a discrete-time flat-fading channel, with output
at time k given by

yk = hk · xk + nk, (1)

where xk is the transmitted symbol, hk the channel fading
coefficient, nk the additive noise component and yk is the
channel output symbol with yk, hk, xk, nk ∈ C. We consider
n time instances and denote y = [y1, . . . , yn]

T the vector
containing the channel output symbols in temporal order. Anal-
ogously, we define x,n and h, the sorted vectors containing
all xk, nk, hk’s respectively. Equation (1) can be expressed in
vector form as

y = Hx + n = Xh + n, (2)

where H = diag(h) and X = diag(x).
The components of the noise vector n are i.i.d. zero-mean

jointly proper Gaussian with variance σ2
n.

The channel fading vector h is a zero-mean jointly proper
Gaussian process. The entries of h are unknown to the receiver
a priori but the statistic of this process is known. Its temporal
correlation is given by rh(l) = E[hk+lh∗k] and its variance by
rh(0) = σ2

h. In matrix form, we denote Rh = E[hhH]. We
define the power spectral density (PSD) of the channel fading
process as Sh(f) =

∑∞
m=−∞ rh(m)e−j2mf for |f | ≤ 0.5.

We denote fd as the maximum Doppler frequency, it holds
0 < fd < 0.5. The PSD is assumed to be supported within
the interval [−fd, fd], which implies that Sh(f) = 0 for f /∈
[−fd, fd]. This simply models the fact that the velocity of the
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transmitter, the receiver, and other objects is limited. To ensure
ergodicity, we exclude the case fd = 0.

The transmit symbol sequence consists of data symbols
xk ∈ S, where S is a constellation set, e.g., QPSK. The
domain of the complete sequence x is the set C = Sn.
Typically the actual transmitted sequences are in a more
limited set because of channel coding and we have x ∈ Cb,
with Cb ∈ C. The transmit symbols are independent and have
variance σ2

x. The mean SNR is given by σ2
xσ

2
h/σ

2
n.

A. Optimal Demapping

The task of non-coherent demapping is to minimize the
conditional probability density function p(y|x) for a given
received signal y over all possible transmitted x. The function
p(y|x) is given by

p(y|x) = exp(−yH(XRhX
H + σ2

nI)−1y)

πndet(XRhXH + σ2
nI)

, (3)

where I is the identity matrix of appropriate size. The optimal
demapping consists in solving the following problem

maximize
x

p(y|x) (4)

subject to x ∈ Cb.

This problem cannot be solved exactly efficiently.

B. Pilot-Aided Demapping

In practice, the channel is estimated based on pilot symbols
periodically inserted into the transmit sequence. In other
words, the transmitted signal x contains data symbols and pilot
symbols that are known to the receiver in advance. We call
xp a pilot symbol, Tp the pilot spacing and yp the vector of
received symbols consisting of all pilot symbols, i.e., wlog.,

yp(i) = y((i− 1)Tp + 1), i = 1, . . . , dn/Tpe. (5)

Denote hp, defined analogously to yp, as the vector of
fading channels coefficients corresponding to the pilot sym-
bols. Further we define two matrices Rhp

= E[hphH
p ] and

Rhhp
= E[hhH

p ]. Finally Xp denotes a diagonal matrix of size
dn/Tpe, containing only pilot symbols defined as Xp = xpI.
The MMSE estimate ĥ of h based on the pilot symbols is
calculated as follows

ĥ = RhhpXH
p (XpRhpXH

p + σ2
nI)−1yp. (6)

The covariance matrix of the estimation error Re is given by

Re = Rh −RhhpXp(XpRhpXH
p + σ2

nI)−1XH
p RH

hhp
. (7)

First, the pilot symbols rate has to be at least as large as
the Nyquist rate. Second, there is a trade-off regarding the
number of pilot to be used. A larger number of pilots enables
a better channel estimation. On the other side, it requires more
bandwidth and transmit power. For more details on this trade-
off refer to [6]. Finally we fed the signal diag(ĥ)−1y to a
demodulator [7], where the total noise variance Vk for symbol
k is given by

Vk = (Re(k, k)σ
2
x + σ2

n)/|ĥk|2. (8)

The main advantage of pilot-based demapping is its low
computational complexity. The main drawback is that, for high
channel dynamics, its achievable rate falls significantly below
the channel capacity [8, Fig. 4].

C. Semidefinite Programming Demapping

Most communication systems perform demapping and de-
coding in two steps. In the present work, we focus on
demapping, i.e., we search for sequences x in C and not in
Cb. The main idea of the present work is to relax the problem
(4), with the constraint x ∈ C, to find an upper bound on
the maximal value of p(y|x) and to obtain a feasible solution
using the randomization method. For simplicity, we consider
a QPSK modulation scheme, i.e.,

S = {1 + i, 1− i,−1 + i,−1− i}. (9)

In this case, det(XRhX
H + σ2

nI) = det(2Rh + σ2
nI) is

constant and maximizing p(y|x) is equivalent to minimizing
yH(XRhX

H + σ2
nI)−1y since the exponential function is

strictly increasing. Finally it holds that

yH(XRhX
H+σ2

nI)−1y = yHX(Rh+(σ2
n/2)I)

−1XHy
= xH(YH(Rh+(σ2

n/2)I)
−1Y)∗x.

The optimal non-coherent demapping problem is equivalent to

minimize
x

xH(YH(Rh + (σ2
n/2)I)

−1Y)∗x (10)

subject to xk ∈ S, k = 1, . . . , n..

The elements of S are complex and for simplification we use
the equivalent real formulation of (10). Using the Cholesky
decomposition we factorize the matrix in the objective function

(YH(Rh + (σ2
n/2)I)

−1Y)∗ = LLH. (11)

We define the matrices

A = BBT, B =

ï
Re(L) −Im(L)
Im(L) Re(L)

ò
. (12)

Finally, we denote z = [Re(x)T Im(x)T]T and the problem
(10) is equivalent to the problem

minimize
z

zTAz (13)

subject to zk ∈ {−1, 1}, k = 1, . . . , 2n.

This problem is nonconvex and cannot be solved efficiently.
In the following, we propose a method to find a solution close
to optimal.

1) Lower Bound through Semidefinite Relaxation: We take
the semidefinite relaxation of problem (13). See [9] and [10]
for an in-depth presentation. For the sake of completeness we
briefly sum-up this relaxation method:

1) We perform a variable change Z = zzT and introduce
two constraints, Z < 0 and rank(Z) = 1.

2) Since zk ∈ {−1, 1} ⇔ z2k = 1, this constraint is equiv-
alent to diag(Z) = 1, where 1 is a vector containing
only 1’s.

3) The actual semidefinite relaxation is performed by drop-
ping the rank constraint.
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The relaxed problem can be therefore expressed as

minimize
Z

tr(AZ) (14)

subject to Z < 0, diag(Z) = 1.

This problem is a convex optimization problem and can be
solved efficiently using standard tools (e.g., interior point
methods). The optimal value of problem (14) is a lower bound
on the optimal value of problem (13). We will use this lower
bound to test the quality of diverse heuristics delivering a
feasible solution.

2) Feasible Solution using the Randomization Method: In
order to generate a feasible solution we will use the solution of
problem (14) in the randomization method [10]. This method
works as follows

1) Solve (14) and get Z?.
2) Draw ẑ ∼ N (0,Z?).
3) Take z = sgn(ẑ).
4) Repeat from 2. and keep the best z.

After only few iterations, the randomization method delivers
a good feasible solution.

III. SOLVING THE RELAXED PROBLEM

The most computing power intensive step in this new
detection method is solving problem (14). This optimization
problem is a semidefinite problem, which can be solved
in polynomial time. In order to have a clear view on the
complexity of such a solver and the possibilities to parallelize
it, we propose in this section, a new convex solver based on
the alternating direction method of multipliers (ADMM) [11].
We recast problem (14) to adapt it to the ADMM framework
as follows

minimize
Z,W

tr(AZ) + i<0(W) (15)

subject to Z = W

diag(Z) = 1,

where i<0(W) is the indicator function of the set of positive
semidefinite matrices and is equal to zero if W < 0 and
+∞ otherwise. Note that a typical ADMM problem would
only have the equality constraint Z = W. In the following,
we modify the ADMM algorithm to account for a second
equality constraint. The augmented Lagrangian for problem
(15) is given by

Lρ(Z,W,U) = tr(AZ) + i<0(W)

+(ρ/2)
∥∥[Z−W diag(Z)− 1

]
+ U

∥∥2
F

where ‖.‖F denotes the Frobenius norm, ρ is a solver intern
parameter and the matrix U is the scaled dual variable and is
defined as the concatenation

U =
[
U1 u2

]
,

where U1 and u2 are the scaled dual variables corresponding
to the first and second equality constraints of (15) respectively.

The ADMM algorithm is an iterative method. At each iteration
q the variable updates take the form

Z(q+1) = argmin
Z

(tr(AZ)

+(ρ/2)
∥∥[Z−W(q) diag(Z)−1

]
+U(q)

∥∥2
F
)

W(q+1)= argmin
W

(i<0(W)

+(ρ/2)
∥∥[Z(q+1)−W diag(Z(q+1))−1

]
+U(q)

∥∥2
F
)

U(q+1) = U(q) +
[
Z(q+1)−W(q+1) diag(Z(q+1))−1

]
.

The key for ADMM to solve our problem quickly is to be
able to solve the Z- and W-updates fast, at best analytically.
Due to space constraints, we explain this next only briefly.

A. Z-update

Let us define the following matrix

T = −(1/ρ)A + W(q) + U
(q)
1 + diag(1− u

(q)
2 ).

By derivating the matrix function tr(AZ) +

(ρ/2)
∥∥[Z−W(q) diag(Z)− 1

]
+ U(q)

∥∥2
F

and setting
the result to zero, it can be shown that

Z(q+1) = T ◦ (11T − (1/2)I), (16)

where ◦ denotes the Hadamard product.

B. W-update

For this update, the matrix W has to be positive semidefinite
and close to Z(q+1) +U

(q)
1 in the Frobenius norm sense. It is

shown in [11] that the W-update is in this case given by

W(q+1) =
∏
<0

(Z(q+1) + U
(q)
1 ), (17)

where
∏

<0(Z
(q+1)+U

(q)
1 ) is the projection of Z(q+1)+U

(q)
1

on the set of positive semidefinite matrices. As explained in
[12], we can find W(q+1) by the eigenvalue decomposition
Z(q+1) + U

(q)
1 = VΛVT, where Λ is a diagonal matrix

containing the eigenvalues of Z(q+1) + U
(q)
1 . We have

W(q+1) = V(Λ)+VT,

where λ+ii = λii if λii > 0 and λ+ii = 0 otherwise.

C. Discussion

1) Complexity: The Z-update and U-update steps have a
linear complexity in terms of the number of entries N of
Z (here N = 4n2). The only nonlinear step is the W-
update, which requires an eigenvalue decomposition, which
has complexity O(N3). It is proven that ADMM converges
[11] and we assume that it converges in a number of steps
bounded by ζ. So we have to solve at most ζ problems with
complexity O(N3). The exact value of ζ depends on ρ, is
difficult to determine and is out of the scope of this paper.
Nevertheless we could experimentally verify that the cost
of the eigenvalue decomposition in the W-update absolutely
dominates the overall run time.

The Tenth International Symposium on Wireless Communication Systems 2013

688

ISBN 978-3-8007-3529-7 © VDE VERLAG GMBH · Berlin · Offenbach, Germany



Fig. 1. Simulation framework.

2) Parallelization: As the eigenvalue decomposition in the
W-update, is the most expensive operation performed by
the solver, this is where we can gain a lot of time using
parallelization. A common and simple way to perform an
eigenvalue decomposition in an iterative and parallel manner
is the well-known parallel Jacobi algorithm [13], which can
significantly reduce the overall run time of the solver. The
Z-update and U-update are trivially parallelized.

3) Comparison with Optimal and Pilot-Based Detection:
The pilot-based detection has a linear complexity and is much
more computation efficient than the convex optimization based
detection. However the proposed method has a much lower
complexity than optimal demapping.

IV. SIMULATION FRAMEWORK

In order to evaluate numerically the performance of our
proposed convex optimization-based demapping and to com-
pare it to the coherent demapping using a pilot-based channel
estimate, we describe our system setup illustrated in Figure 1.

In our simulations we transmit bit sequences with a length
of 504 bits. We use a low density parity check (LDPC) code
of rate r = 1/2, with a parity check matrix of size 504×1008
[14]. A random bit interleaver is used. After that we map two
bits to a QPSK symbol. At his point we have a sequence of
n = 504 symbols. Next we proceed to two sequential rounds
of differential encoder. Denoting an input symbol as x(k) =√
2eiα(k) and an output symbol as xenc(k) =

√
2eiαenc(k), one

round is described as follows,

αenc(k) = α(k)− αenc(k − 1) + π/4, (18)

with αenc(1) = α(1). The reason why to use differential en-
coding and especially two rounds of it is subtle. When looking
at the objective function of problem (10), we can see that given
a specific feasible point x, then each other points xr that are a
constant rotation of x, i.e., xr = xeiθ, achieve the same objec-
tive value. In other words, problem (10) has at least 4 different
solutions assuming a QPSK modulation scheme. In terms of
convex optimization, none of these solutions is better than the
other. However for a communication system, we are only inter-
ested in the transmitted signal, all other solutions are actually
completely wrong. Most communication systems tackle this
problem by only using distinguishable sequences. However
we are not solving the problem exactly and we might have a
large range of feasible points, with similar objective values,
but with a much different number of demapping errors. This is

a huge problem, since we cannot say that a demapped signal
with a better objective value is closer to the transmitted signal.
The two rounds of differential decoders are present for this
reason. We get rid of a main rotation using the first differential
decoder and some internal local rotations with the second one.
We could add more encoder/decode pairs, but each new pair
starts to introduce random errors in the demapped signal.

The fading channel realization is generated using the sum
of sinusoids model as described by Jakes [15]. After the signal
is received, the demapping is performed as follows.

1) Generate a feasible vector zl as in Section II-C2.
2) Calculate its objective value pl, according to (13).
3) Perform two rounds of differential decoding on the

complex representation of zl. Denoting an input symbol
as x(k) =

√
2eiα(k) and an output symbol as xdec(k) =√

2eiαdec(k), one round is described as follows,

αdec(k) = α(k) + α(k − 1)− π/4, (19)

with αdec(1) = α(1).
4) Store xl, the results of the differential decoding, and pl.
5) Repeat nrand times (For our results, we generated nrand =

1000 vectors from |S|n = 4504 possible vectors).
Using the stored vectors xl with l = 1, . . . , nrand (each of size
n), we calculate a log-likelihood ratio (LLR) vector of size
2n, containing the LLR for all code bits as follows

LLR(k) = log

Ç∑
{xl|ck(xl)=0} pl∑
{xl|ck(xl)=1} pl

å
, (20)

where ck(xl) is k-th bit of xl. The LLR vector is then fed to
the deinterleaver and finally to the LDPC decoder.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the convex
optimization based demapping and the pilot-aided demapping.
The main factor influencing the results is fd. In Fig. 2, we
simulate a fading channel with a relatively high dynamic with
fd = 10−2. We plot the bit error rate (BER) with respect to
the Eb/N0, where Eb is the energy per information bit and
N0 is noise power spectral density for
• the coherent demapping using the pilot-aided channel es-

timate (6), denoted PA, for different pilot spacing Tp and
• the convex optimization-based demapping, denoted CO,

for different block lengths. In this regard, the number of
transmit symbols is 504. Solving the problem (14) might
be very time consuming. To shorten it, we demodulate
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Fig. 2. BER with respect to Eb/No, fd = 0.01.

smaller blocks of the received signal but we loose
information by dropping the correlation between blocks.

Let us first analyze the PA results. Using a too large number
of pilot symbols (e.g., Tp = 2) is not beneficial, it increases
the required Eb/N0 to achieve a specific BER and is inef-
ficient. On the other side, using a too low number of pilot
symbols (e.g., Tp = 50) leads to a poor channel estimation
and consequently to a high BER. When comparing the CO
demapping for different block length, as expected, a larger
block length provides better performance, since we simply use
more available information. Finally, we compare the PA and
CO demapping methods. From a block length of 126 on, the
CO demapping outperforms the PA demapping for a BER of
10−2. For a block length of 252, we observe a difference of
over 2dB at a BER of 10−3.

Now we would like to analyze a less preferential scenario
for the CO demapping, i.e., when the channel dynamic is
lower. In Fig. 3, we simulate a fading channel with fd = 10−3.
In this case the PA approach outperforms the CO approach
for Tp ≤ 100 at a BER of 10−3, while the CO approach still
performs reasonably and achieve an BER of ∼ 10−4 at 14dB.
For a lower pilot frequency, the CO approach performs slightly
better and is saving bandwidth and transmit power resources
by using no pilots. In general, it is expected that using the
CO approach with a block length of 504 will show a more
favorable comparison.

VI. CONCLUSION

We have proposed a new method to perform non-coherent
QPSK demapping using convex optimization. We first for-
mulate the problem of minimizing the conditional probability
density function of the received signal over all possible trans-
mit signals. We then relax this problem using semidefinite
relaxation and solve the relaxed problem using a new ADMM
solver. The solution of the relaxed problem is then used as
input for the randomization method that finally delivers a
LLR measure of the transmit signal. We have implemented

0 2 4 6 8 10 12 14 16

10−1

10−2

10−3

10−4

Tp = 300Tp = 50

Tp = 100

Tp = 200

Eb/N0 [dB]

B
E

R

CO (block length 63)
CO (block length 126)
PA

Fig. 3. BER with respect to Eb/No, fd = 0.001.

a complete communication framework, evaluated our new
method and compared it to coherent detection using pilot
symbols for channel estimation. We have shown that the
convex optimization based demapping outperforms the pilot-
aided demapping for high channel dynamics and performs well
at lower dynamics while saving bandwidth and transmit power.
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