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Problem 1. (25 points)
Analysis of Multivariate Densities and Maximum Likelihood Estimation, (26P):

a) The support of fZ(x, y) is given by 0 ≤ y ≤ 1 and y ≤ x ≤ y + 1 for a = 1. This leads
to the following sketch.
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b) With 1 =
∫∫

supp{fZ} fZ(x, y) dx dy we obtain

1 =
∫ a

0

∫ y+a

y
c dx dy = c

∫ a

0
a dy = c a2 ⇒ c = 1

a2 .

c) With E(X) =
∫∫

supp{fZ} x fZ(x, y) dx dy we deduce

µX =
∫ 1

0

∫ y+1

y
x dx dy = 1

2

∫ 1

0
[(y + 1)2 − y2] dy = 1

2

∫ 1

0
[2y + 1] dy = 1 ⇒ µX = 1 .

⇒ E(Z) = 1
2

(
2
1

)

d) With Cov(X, Y ) =
∫∫

supp{fZ}(x− µX) (y − µY ) fZ(x, y) dx dy we calculate

Cov(Y, Y ) =
∫ 1

0

∫ y+1

y

(
y−1

2

)2
dx dy =

∫ 1

0

(
y−1

2

)2
dy = 1

3

[(
y−1

2

)3
]1

0
= 1

12 ⇒ σ2,2 = 1
12

and

Cov(X, Y ) =
∫ 1

0

∫ y+1

y
(x− 1)

(
y − 1

2

)
dx dy = 1

2

∫ 1

0

[
y2 − (y − 1)2

] (
y − 1

2

)
dy

=
∫ 1

0

(
y − 1

2

)2
dy = σ2,2 = 1

12 ⇒ σ1,2 = σ2,1 = 1
12 .

⇒ ΣZ = 1
12

(
2 1
1 1

)



e) With fX(x) =
∫

supp{fZ} fZ(x, y) dy and fY (y) =
∫

supp{fZ} fZ(x, y) dx for the marginal
densities, it follows

0 ≤ x ≤ 1 : ⇒ fX(x) =
∫ x

0
dy = x ,

1 ≤ x ≤ 2 : ⇒ fX(x) =
∫ 1

x−1
dy = 2− x ,

x ∈ R \ [0, 2] : ⇒ fX(x) = 0 .

and

0 ≤ y ≤ 1 : ⇒ fY (y) =
∫ y+1

y
dx = 1 ,

y ∈ R \ [0, 1] : ⇒ fY (y) = 0 .

f) X and Y are dependent since fZ(x, y) 6= fX(x)fY (y).

g) Putting the substitutes X = aX̃ and Y = aỸ into the support defined by 0 ≤ y ≤ a and
y ≤ x ≤ y + a, and dividing by a leads to a normalized support defined by 0 ≤ ỹ ≤ 1
and ỹ ≤ x̃ ≤ ỹ + 1 which is the support for the case a = 1. Hence, in the general case
a > 0, the random vector Z is just scaled by a in comparison to the case a = 1. This
leads to

⇒ E(Z) = a
2

(
2
1

)
and ΣZ = a2

12

(
2 1
1 1

)
for the general case.

h) Since the random vectors Z1,Z2, . . . ,Zn are IID, the joint density is the multiplication
of all single densities. So the likelihood function is given by

L(a,Z1,Z2, . . . ,Zn) =
n∏

i=1
fZ(xi, yi) = 1

a2n

i) With the log-likelihood function `(a,Z1,Z2, . . . ,Zn) = log
(
L(a,Z1,Z2, . . . ,Zn)

)
=

−2n log(a), we observe that the derivative −2n/a is negative, such that ` is strictly
decreasing in a.

j) Since ` is strictly decreasing in a, a smaller a leads to a larger `. Due to the support of `
given by 0 ≤ yi ≤ a and yi ≤ xi ≤ yi + a for all i, the parameter a is lower bounded by
yi and xi − yi. This leads to the maximum likelihood estimator â = max

1≤i≤n
{yi, xi − yi}.



Problem 2. (25 points)
Principal Component Analysis, (25P):

a) With x̄n = 1
n

∑n
i=1 xi, we obtain

x̄4 =
√

3
4

(
4 + 4 + 0 + 0
4− 4 + 8− 4

)
=
√

3
(

2
1

)
.

b) With Sn = 1
n−1

∑n
i=1(xi − x̄)(xi − x̄)T, we obtain

S4 =
(

2
3

)(
2 3

)
+
(

2
−5

)(
2 −5

)
+
(
−2
7

)(
−2 7

)
+
(
−2
−5

)(
−2 −5

)
=
(

4 6
6 9

)
+
(

4 −10
−10 25

)
+
(

4 −14
−14 49

)
+
(

4 10
10 25

)

=
(

16 −8
−8 108

)
= 4

(
4 −2
−2 27

)
.

c) Since the normalized matrix 1
4S4 is symmetric, there are only two Gerschgorin’s circles.

Both circles have the same radius 2 and are located at 4 and 27 on the real line.

<
(
λ(S4

4 )
)

5 10 15 20 25

=
(
λ(S4

4 )
)

−5

5

d) The matrix S4 is positive definite, since both Gerschgorin’s circles are strictly located
on the righthand side of the complex domain.

e) The eigenvalues of S10k are solutions of det(S10k − Iλ) = 0. This leads to∣∣∣∣∣14− λ −14
−14 110− λ

∣∣∣∣∣ = (14−λ)(110−λ)−142 = λ2−124λ+1344 = (112−λ)(12−λ) = 0 .

Hence, the diagonal matrix is determined by

Λ =
(

112 0
0 12

)
.

The eigenvectors S10k are solutions of S10kv = vλ. In addition the eigenvectors should
be normalized, i.e., ‖v‖ = 1. We obtain(

14 −14
−14 110

)(
v1
v2

)
= 112

(
v1
v2

)
⇒ v2 = −7v1 and v2

1 + v2
2 = 1 ,



which yields the normalized eigenvector
(

1√
50

−7√
50

)T
for the eigenvalue 112. For the

next eigenvector we only need to swap the entries of the first eigen vector and change
the sign of one entry. This leads to the eigenvector

(
7√
50

1√
50

)T
for the eigenvalue 12.

Putting the eigenvectors together we deduce the matrix

V = 1√
50

(
1 7
−7 1

)
.

f) The best projection matrix Q is determined by the first k dominant eigenvectors vi

as Q∑k
i=1 vivT

i , where k is the dimension of the image. For a transformation of a
two-dimensional sample to a one-dimensional data (k=1), we obtain

Q = 1√
50

(
1
−7

)
1√
50
(
1 −7

)
= 1

50

(
1 −7
−7 49

)
.

The image of x1 is obtained by 1√
50

(
1 −7

)
x1 which gives x̂1 = −24

√
3
50 .

g) The residuum 1
n−1 max

Q

∑n
i=1 ‖Qxi −Qx̄n‖2 is equal to the sum ∑k

i=1 λ(Sn) of dominant
eigenvalues, that is equal to 112 in the present case.



Problem 3. (25 points)
A dataset, consisting of three-dimensional vectors and their respective labels, is given below.

Data Label Data Label Data Label

x1 =

1
1
1

 y1 = 1 x4 =

 1
−1
−1

 y4 = 2 x7 =

−1
1
1

 y7 = 3

x2 =

1
2
0

 y2 = 1 x5 =

 0
−2
−1

 y5 = 2 x8 =

−1
0
2

 y8 = 3

x3 =

 1
1
−1

 y3 = 1 x6 =

−1
−1
−1

 y6 = 2 x9 =

−1
−1
1

 y9 = 3

Some general values we will need:

x1 = x1 + x2 + x3

3 =

1
4
3
0

 .

x2 = x4 + x5x6

3 =

 0
−4

3
−1

 .

x3 = x7 + x8 + x9

3 =

−1
0
4
3

 .

x1 − x2 =

1
8
3
1

 ,x2 − x3 =

 1
−4

3
−7

3

 .
a) (5P) To find W, we have:

x1 − x1 =

 0
−1

3
1

 ,x2 − x1 =

0
2
3
0

 ,x3 − x1 =

 0
−1

3
−1



x4 − x2 =

1
1
3
0

 ,x5 − x2 =

 0
−2

3
0

 ,x6 − x2 =

−1
1
3
0



X1 =

xT
1

xT
2

xT
3



X2 =

xT
4

xT
5

xT
6



XT
1 E1X1 =

∑
i:yi=1

(xi − x1)(xi − x1)T =

0 0 0
0 2

3 0
0 0 2





XT
2 E2X2 =

∑
i:yi=2

(xi − x2)(xi − x2)T =

2 0 0
0 2

3 0
0 0 0


Hence:

W =
2∑

l=1
XT

l ElXl =

2 0 0
0 4

3 0
0 0 2


b) (3P) Find the Fisher’s linear discriminant rule for the vectors xi with labels yi = 1 and

yi = 2. Explain each step.

• Find the matrix B and W. First we find the total mean for yi = 1, 2:

x =
∑6

i=1 xi

6 =


1
2
0
−1

2

 .

(x1 − x)(x1 − x)T =


1
2
4
3
1
2

(1
2

4
3

1
2

)
=


1
4

2
3

1
4

2
3

16
9

2
3

1
4

2
3

1
4

 .

(x2 − x)(x2 − x)T =

−
1
2
−4

3
−1

2

(−1
2 −

4
3 −

1
2

)
=


1
4

2
3

1
4

2
3

16
9

2
3

1
4

2
3

1
4

 .
Hence:

B =
2∑

l=1
3(xl − x)(xl − x)T =


3
2 4 3

2
4 32

3 4
3
2 4 3

2

 .
• Find the eigenvector of W−1B corresponding to the largest eigenvalue: Therefore :

W−1 =


1
2 0 0
0 3

4 0
0 0 1

2

 .

W−1B =


3
4 2 3

4
3 8 3
3
4 2 3

4

 .

As it can be seen, the matrix W−1B has the form

α1x
α2x
α3x

 and therefore its

eigenvalues are given by (0, 0, tr(W−1B)) and its top eigenvector is given by

α1
α2
α3

 ..
Therefore the discriminant vector a is given by

1
4
1

 which is the eigenvector for

λ = 9.5.
• Based on a, allocate x to C1 if aT (x− 1

2(x1 + x2)) > 0, which is:

(
1 4 1

)
(x−


1
2
0
−1

2 .

) > 0



Another way:

• For two-classes, we have:

a = W−1(x1 − x2) =

0.5
2

0.5


and the discriminant rule is given by aT (x− 1

2(x1 + x2)) > 0, which is:

(
0.5 2 0.5

)
(x−


1
2
0
−1

2 .

) > 0

c) (4P) The maximum likelihood estimation of the expected values, denoted by µ̂1, µ̂2, µ̂3,
is given by x1,x2,x3 calculated above.

d) (5P) The maximum likelihood estimation of the covariance matrix, Σ̂, is given by W
n

where:
W =

3∑
l=1

XT
l ElXl.

n is equal to 9 in this problem. We need only to find XT
3 E3X3:

XT
3 E3X3 =

∑
i:yi=3

(xi − x3)(xi − x3)T =

0 0 0
0 2 0
0 0 2

3


Then:

Σ̂ = 1
9

2 0 0
0 10

3 0
0 0 8

3

 .
e) (3P) To find Σ̂, we use its ML-estimation which is 1

6W found using only those vectors
with label 2 and 3.

Σ̂ = 1
6

2 0 0
0 8

3 0
0 0 2

3

 .
f) (5P) The ML rule allocates x to the class C1 if

αT (x− µ̂) > 0,

where α = Σ̂−1(µ̂1 − µ̂2) and µ = 1
2(µ̂1 + µ̂2). The estimations µ̂1 and µ̂2 are available

from the previous problems. Finally:

α = Σ̂−1(x2 − x3) = 1
6


1
2
−1

2
−7

2

 .
And then : αT (x− 1

2(x3 + x2)) > 0, which is:

1
6
(

1
2 −

1
2 −

7
2

)
(x−

−
1
2
−2

3
1
6 .

) > 0





Problem 4. (25 points)
(25P)

a) (3P) b is given as −1
2aT (x1 + x2) = 3.

b) (4P) Supporting vectors are those with λi 6= 0, which are x2,x3,x4,x5.

xi yi λi xi yi λi

x1 =
(

1
1

)
y1 = −1 λ1 = 0 x4 =

(
0.5
−0.5

)
y4 = 1 λ4 = 4.73

x2 =
(

2
0

)
y2 = −1 λ2 = 0.67 x5 =

(
−2
1

)
y5 = 1 λ5 = 0.94

x3 =
(

0
0

)
y3 = −1 λ3 = 5 x6 =

(
0
−1

)
y6 = 1 λ1 = 0

c) (6P) For those vectors, the normal vector of the hyperplane is obtained as:

a =
6∑

i=1
λiyixi = λ2y2x2 + λ3y3x3 + λ4y4x4 + λ5y5x5

a = −0.67
(

2
0

)
− 5

(
0
0

)
+ 4.73

(
0.5
−0.5

)
+ 0.94

(
−2
1

)
=
(
−0.86
−1.43

)
To find b, take two support vectors xk and xl with yk = 1 and yl = −1 with 0 < λ < 5.
For these support vectors, we have yi(aT xi + b) = 1. Hence:

b? = −1
2 a?T (xk + xl) = −1

2
(
−0.86 −1.43

)
(
(

2
0

)
+
(
−2
1

)
) = 1.43

2 = 0.715. (1)

d) (6P)
Suppose that a kernel is given by K(x,y) = (2xT y + 1)2 for x,y ∈ Rp. Write the kernel
as

K(x,y) = (2xT y + 1)2 = (2
p∑

i=1
xiyi + 1)2

= 4
p∑

i=1
x2

i y
2
i + 8

∑
1≤i<j≤p

xixjyiyj + 4
p∑

i=1
xiyi + 1,

therefore φ(x) can be written as:

φ(x) = (2x2
1, . . . , 2x2

p, 2x1, . . . , 2xp, 1,
√

8x1x2,
√

8x1x3, . . . ,
√

8xp−1xp).

The dimension of feature space is p+ p+ 1 + p(p−1)
2 = (p+1)(p+2)

2 .

e) (3P) The Kernel calssifer replaces the inner product in dual problem:

max
n∑

i=1
λi −

1
2
∑
i,j

yiyjλiλjK(xi,xj)

s.t. 0 ≤ λi

n∑
i=1

λiyi = 0.



For the proposed K we have:

max
n∑

i=1
λi −

1
2
∑
i,j

yiyjλiλj exp(−γ‖xi − xj‖2)

s.t. 0 ≤ λi

n∑
i=1

λiyi = 0.

f) (3P) From this optimization problem, the vector φ(a) in the feature space is obtained
as:

φ(a) =
n∑

i=1
λiyiφ(xi).

and for two vectors with yk = 1 and yl = −1 and 0 < λ.

b? = −1
2 φ(a?)T (φ(xk) + φ(xl))

= −1
2 (

n∑
i=1

λiyiφ(xi))T (φ(xk) + φ(xl))

= −1
2

n∑
i=1

λiyi(φ(xi)Tφ(xk) + φ(xi)Tφ(xl))

= −1
2

n∑
i=1

λiyi(K(xi,xk) +K(xi,xl)).

The kernel classifier is given as:

φ(a)Tφ(x) + b? ≥ 1 =⇒ x ∈ C1

φ(a)Tφ(x) + b? ≤ −1 =⇒ x ∈ C2

where
φ(a)Tφ(x) =

n∑
i=1

λiyiK(xi,x)


