
4 Dimensionality Reduction

4.3 Diffusion Maps

Diffusion Maps is a non-linear dimensionality reduction technique or feature extraction,
introduced by Coifman and Lafon [CL06]. With ISOMAP, it is another example of
manifold learning algorithms that capture the geometry of the data set. Data are repre-
sented by parameters of its underlying geometry in a low dimensional Euclidean space.
Main intention is to discover the underlying manifold that the data has been sampled
from. The main idea is to construct a kernel based on the connection between data.
The eigenvectors of this kernel represent the data in lower dimension. The diffusion map
framework consists of the following steps [TCGC13]:

1. Constructing a weighted graph (V,E,W) on the data. The pairwise weights mea-
sure the closeness between data points.

2. Defining a random walk on the graph determined by a transition matrix con-
structed from the weights W

3. Non-linear embedding of points in a lower dimensional space based on the param-
eters of the graph and the respective transition matrix

Let x1, . . . ,xn ∈ Rp be n samples. We start from constructing a weighted graph
(V,E,W). Nodes which are connected by an edge with large weight are considered to
be close. Each sample xi is associated with a vertex vi. The weight of an edge between
xi and xj is given by the weight function or kernel wij = K(xi,xj). The kernel should
satisfy three properties:

• Symmetry: K(xi,xj) = K(xj ,xi)

• Non-negativity: K(xi,xj) ≥ 0

• Locality: there is a scale parameter � such that if �xi−xj� � � thenK(xi,xj) → 1,
and if �xi − xj� � � then K(xi,xj) → 0.

Note that the kernel function encapsulates the notion of closeness between the points.
Setting the scale parameter �, similar to the choice of � in ISOMAP, is important. Small
� may lead to a disconnected graph and large � may miss the underlying geometry.
Gaussian kernel is one of the well known weight functions and is defined as:

K(xi,xj) = exp

�
−�xi − xj�2

2�2

�
.

Using kernel functions, the weight matrix is constructed.

Next, we construct a random walk Xt, t = 0, 1, 2, . . . on the vertices of the graph
V = {v1, . . . , vn} with transition matrix:

M = (Mij)i,j=1,...,n with Mij =
wij

deg(i)
, 1 ≤ i, j ≤ n.
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4.3 Diffusion Maps

with W = (wij)1≤i,j≤n and deg(i) =
�

j wij . The transition matrix represents the
probability of moving from the node vi at time t to vj at time t+ 1, namely:

P(Xt+1 = j|Xt = i) = Mij .

The transition matrix M can be written as D−1W where D = diag(deg(1), . . . , deg(n)).
The conditional distribution of being at the vertex vj having started at the vertex vi is
given by:

P(Xt = j|X0 = i) = (Mt)i,j , j = 1, . . . , n.

The probability of being at each vertex after step time t starting from vi is given by ith

row of Mt = (M
(t)
ij )1≤i,j≤n. This distribution is given by:

vi → eTi M
t = (M

(t)
i1 , . . . ,M

(n)
in ).

Therefore to each vertex vi, a vector of probabilities is assigned. This vector contains
information about underlying geometry. If vi and vj are close - strongly connected in
the graph - then eTi M

t and eTj M
t will be similar.

However it is still not clear how this representation can be embedded in a low-
dimensional space. To do this, we focus on the spectrum of Mt. The transition
M = D−1W is not symmetric, however the normalized matrix S = D1/2MD−1/2 is sym-
metric because S = D1/2D−1WD−1/2 = D−1/2WD−1/2 and W is symmetric. Spectral
decomposition of S is then given by S = VΛVT , with Λ = diag(λ1, . . . ,λn) eigenvalue
matrix such that λ1 ≥ . . .λn. Therefore M can be written as:

M = D−1/2VΛVTD1/2 = ΦΛΨ

where Φ = D−1/2V = (φ1, . . . ,φn) and Ψ = D1/2V = (ψ1, . . . ,ψn).
Φ and Ψ are bi-orthogonal, i.e., ΦTΨ = In, or equivalently φT

i ψj = δij . λk’s are the
eigenvalues of M with right and left eigenvectors φk and ψk:

Mφk = λkφk,ψ
T
kM = λkψ

T
k

In summary:

M =
n�

k=1

λkφkψ
T
k

and hence:

Mt =
n�

k=1

λt
kφkψ

T
k .

eTi M
t =

n�

k=1

λt
ke

T
i φkψ

T
k =

n�

i=1

λt
kφk,iψ

T
k ,

Therefore the distribution eTi M
t can be represented in terms of basis vectors ψk with

coefficients λt
kφk,i for k = 1, . . . , n with φk = (φk,1, . . . ,φk,n)

T . These coefficients are
used to define the diffusion map.
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Definition 4.5. The diffusion map at step time t is defined as:

φt(vi) =



λt
1φ1,i
...

λt
nφn,i


 , i = 1, . . . , n

In the diffusion map, φk,i does not vary with t but each element is dependent on t via
λt
i. The eigenvalues of transition matrix therefore capture the main components of the

data. Following theorem provides some information about the eigenvalues of M.

Theorem 4.6. The eigenvalues λ1, . . . ,λn of M satisfy |λk| ≤ 1. It also holds that
M1n = 1n and 1 is an eigenvalue of M.

Proof. Since M is a stochastic matrix, then sum of each row elements is one which
implies M1n = 1n. Let mk = (mk,1, . . . ,mk,n)

T be the eigenvector corresponding to λk.
Suppose that |mk,l| = max1≤j≤n |mk,j |, which means that |mk,j | ≤ |mk,l|. It can be seen
that:

n�

j=1

Mljmk,j = λkmk,l =⇒ |λk| ≤
n�

j=1

Mlj
|mk,j |
|mk,l|

≤
n�

j=1

Mlj = 1.

An interesting point is that λ1 = 1 and φ1 = 1n. Therefore the first element of the
diffusion map in above definition is always one for all points. Therefore we simply drop
this from the diffusion map and rewrite it as:

φt(vi) =



λt
2φ2,i
...

λt
nφn,i


 , i = 1, . . . , n.

It is possible to have more than one eigenvalues with absolute value equal to one. In
this case, the underlying graph is either disconnected or bipartite.
If λk is small, λt

k is rather small for moderate t. This motivates truncating the diffusion
maps to d dimensions.

Definition 4.7. The diffusion map truncated to d dimensions is defined as:

φ
(d)
t (vi) =




λt
2φ1,i
...

λt
d+1φn,i


 , i = 1, . . . , n

φ
(d)
t (vi) is an approximate embedding of v1, . . . , vn in a d−dimensional Euclidean

space. If the graph structure (V,E,W) is appropriately chosen, non-linear geometries
can also be recovered using diffusion maps.
The connection between the Euclidean distance in the diffusion map coordinates (dif-

fusion distance) and the distance between the probability distributions is described in
the following [Ban08, Theorem 2.11].
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Theorem 4.8. For any pair of nodes vi and vj it holds that:

�φt(vi)− φt(vj)�2 =
n�

l=1

1

deg(l)

�
P(Xt = l|X0 = i)− P(Xt = l|X0 = j)

�2
.

Proof. Exercise.
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