2 Matrix Algebra

Figure 2.1: Orthogonal Projection

Definition 2.9. The matrix $\mathbf{Q} \in \mathbb{R}^{n \times n}$ is called projection matrix, or idempotent, if $\mathbf{Q}^2 = \mathbf{Q}$. It is called orthogonal projection if additionally $\mathbf{Q}^T = \mathbf{Q}$.

The linear transformation \mathbf{Q} maps onto $\operatorname{Im}(\mathbf{Q})$, a k-dimensional subspace of \mathbb{R}^n . Let $\mathbf{x} \in \mathbb{R}^n$, and $\mathbf{y} = \mathbf{Q}\mathbf{x} \in \operatorname{Im}(\mathbf{Q})$. Since \mathbf{Q} is the projection matrix, $\mathbf{Q}\mathbf{y} = \mathbf{y}$. For an orthogonal projection, $\mathbf{x} - \mathbf{Q}\mathbf{x}$ is orthogonal to all vectors \mathbf{y} in $\operatorname{Im}(\mathbf{Q})$ for every $\mathbf{x} \in \mathbb{R}^n$. To see this, note that there is a vector $\mathbf{z} \in \mathbb{R}^n$ such that $\mathbf{y} = \mathbf{Q}\mathbf{z}$. Then we have:

$$\mathbf{y}^T(\mathbf{x} - \mathbf{Q}\mathbf{x}) = \mathbf{z}^T \mathbf{Q}^T(\mathbf{x} - \mathbf{Q}\mathbf{x}).$$

Since for an orthogonal projection $\mathbf{Q}^T = \mathbf{Q}$ then:

$$\mathbf{z}^T \mathbf{Q}^T (\mathbf{x} - \mathbf{Q}\mathbf{x}) = \mathbf{z}^T \mathbf{Q} (\mathbf{x} - \mathbf{Q}\mathbf{x}) = \mathbf{z}^T (\mathbf{Q}\mathbf{x} - \mathbf{Q}^2\mathbf{x}) = \mathbf{z}^T (\mathbf{Q}\mathbf{x} - \mathbf{Q}\mathbf{x}) = 0.$$

Therefore $\mathbf{y}^T(\mathbf{x} - \mathbf{Q}\mathbf{x}) = 0$ and $\mathbf{x} - \mathbf{Q}\mathbf{x}$ is orthogonal to \mathbf{y} .

Lemma 2.10. Let $\mathbf{M} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$ be spectral decomposition of $\mathbf{M} \in \mathbb{R}^{n \times n}$ and symmetric. For $k \leq n$, the matrix $\mathbf{Q} = \sum_{i=1}^{k} \mathbf{v}_i \mathbf{v}_i^T$ is an orthogonal projection onto $\operatorname{Im}(\mathbf{Q}) = \langle \mathbf{v}_1, \dots, \mathbf{v}_k \rangle$.

Proof. For $\mathbf{x} \in \mathbb{R}^n$, we have:

$$\mathbf{Q}\mathbf{x} = \sum_{i=1}^{k} \mathbf{v}_i \mathbf{v}_i^T x = \sum_{i=1}^{k} (\mathbf{v}_i^T \mathbf{x}) \mathbf{v}_i = \sum_{i=1}^{k} \gamma_i \mathbf{v}_i \in \mathrm{Im}(\mathbf{Q}).$$

Moreover:

$$\mathbf{Q}^2 = \left(\sum_{i=1}^k \mathbf{v}_i \mathbf{v}_i^T\right) \left(\sum_{i=1}^k \mathbf{v}_i \mathbf{v}_i^T\right) = \sum_{i=1}^k \mathbf{v}_i \mathbf{v}_i^T = \mathbf{Q}.$$

Finally ${\bf Q}$ is symmetric and therefore it is an orthogonal projection.

 Let Q be an orthogonal projection on Im(Q), Then I − Q is an orthonormal projection onto ker(Q).

 $\ker(\mathbf{Q})$ denotes the kernel of $\mathbf{Q},$ and $\mathrm{Im}(\mathbf{Q})$ denotes the image of $\mathbf{Q}.$

$$(\mathbf{I} - \mathbf{Q})^2 = (\mathbf{I} - \mathbf{Q})(\mathbf{I} - \mathbf{Q}) = \mathbf{I} - 2\mathbf{Q} + \mathbf{Q}^2 = \mathbf{I} - \mathbf{Q}.$$

Therefore $\mathbf{I} - \mathbf{Q}$ is a projection matrix. Since \mathbf{Q} is symmetric, so is $\mathbf{I} - \mathbf{Q}$ and hence an orthogonal projection. Let $\mathbf{y} \in \ker(\mathbf{Q})$, i.e., $\mathbf{Q}\mathbf{y} = \mathbf{0}$. Then:

$$(\mathbf{I} - \mathbf{Q})\mathbf{y} = \mathbf{y} - \mathbf{Q}\mathbf{y} = \mathbf{y} \in \operatorname{Im}(\mathbf{I} - \mathbf{Q}).$$

Therefore $\ker(\mathbf{Q}) \subseteq \operatorname{Im}(\mathbf{I} - \mathbf{Q})$. On the other hand, suppose that $y \in \operatorname{Im}(\mathbf{I} - \mathbf{Q})$. There is $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{y} = (\mathbf{I} - \mathbf{Q})\mathbf{x}$. We have:

$$\mathbf{Q}\mathbf{y} = \mathbf{Q}(\mathbf{I} - \mathbf{Q})\mathbf{x} = \mathbf{Q}\mathbf{x} - \mathbf{Q}^2\mathbf{x} = \mathbf{Q}\mathbf{x} - \mathbf{Q}\mathbf{x} = \mathbf{0}.$$

So $\mathbf{y} \in \ker(\mathbf{Q})$ and therefore $\operatorname{Im}(\mathbf{I} - \mathbf{Q}) \subseteq \ker(\mathbf{Q})$. So $\operatorname{Im}(\mathbf{I} - \mathbf{Q}) = \ker(\mathbf{Q})$.

• Define \mathbf{E}_n as follows:

$$\mathbf{E}_{n} = \mathbf{I}_{n} - \frac{1}{n} \mathbf{1}_{n \times n} = \begin{bmatrix} 1 - \frac{1}{n} & -\frac{1}{n} & \dots & -\frac{1}{n} \\ -\frac{1}{n} & 1 - \frac{1}{n} & \dots & -\frac{1}{n} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{n} & -\frac{1}{n} & \dots & 1 - \frac{1}{n} \end{bmatrix}$$

Then \mathbf{E}_n is an orthogonal projection onto $\mathbf{1}_n^{\perp} = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{1}_n^T \mathbf{x} = 0\}$ where $\mathbf{1}_n$ is all one vector in \mathbb{R}^n .

See that for all $\mathbf{x} \in \mathbb{R}^n$:

$$\mathbf{1}_n^T \mathbf{E}_n \mathbf{x} = \mathbf{1}_n^T (\mathbf{I}_n - \frac{1}{n} \mathbf{1}_{n \times n}) \mathbf{x} = (\mathbf{1}_n^T - \mathbf{1}_n^T) \mathbf{x} = \mathbf{0}.$$

Therefore each vector in $\text{Im}(\mathbf{E}_n)$ is orthogonal to $\mathbf{1}_n$.

Note that $\frac{1}{n}\mathbf{1}_{n\times n} \times \frac{1}{n}\mathbf{1}_{n\times n} = \frac{1}{n}\mathbf{1}_{n\times n}$ and $\frac{1}{n}\mathbf{1}_{n\times n}$ is symmetric. Therefore it is an orthogonal projection. Moreover its image is a one dimensional subspace spanned by $\mathbf{1}_n$. From the previous item, $\mathbf{I}_n - \frac{1}{n}\mathbf{1}_{n\times n}$ is also an orthogonal projection onto the kernel of $\frac{1}{n}\mathbf{1}_{n\times n}$ which is $\mathbf{1}_n^{\perp}$.

Theorem 2.11 (Inverse and determinant of partitioned matrix). Let $\mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^T & \mathbf{C} \end{bmatrix}$ be a symmetric, invertible (regular) and \mathbf{A} is also invertible (regular). Then:

(a) The inverse matrix of \mathbf{M} is given by:

$$\mathbf{M}^{-1} = \begin{bmatrix} \mathbf{A}^{-1} + \mathbf{F}\mathbf{E}^{-1}\mathbf{F}^T & -\mathbf{F}\mathbf{E}^{-1} \\ -\mathbf{E}^{-1}\mathbf{F}^T & \mathbf{E}^{-1} \end{bmatrix}$$

where **E** is the Schur complement given by $\mathbf{E} = \mathbf{C} - \mathbf{B}^T \mathbf{A}^{-1} \mathbf{B}$ and $\mathbf{F} = \mathbf{A}^{-1} \mathbf{B}$.

2 Matrix Algebra

Figure 2.2: Orthogonal Projection of \mathbf{E}_2

(b) The determinant of \mathbf{M} is given by:

$$det(\mathbf{M}) = det(\mathbf{A}) det(\mathbf{C} - \mathbf{B}^T \mathbf{A}^{-1} \mathbf{B}).$$

There is also an extension of this theorem for general case where $\mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}$ (see [Mur12, p.118]).

Definition 2.12 (Isometry). A linear transformation $\mathbf{M} : \mathbb{R}^n \to \mathbb{R}^n$ is called an isometry if $\mathbf{x}^T \mathbf{x} = (\mathbf{M} \mathbf{x})^T (\mathbf{M} \mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$.

Some properties of isometries are as follows:

- If **U** and **V** are isometries, then the product **UV** is also an isometry.
- If **U** is an isometry, $|\det(\mathbf{U})| = 1$.
- If **U** is an isometry, then $|\lambda(\mathbf{U})| = 1$ for all eigenvalues of **U**.

3 Multivariate Distributions and Moments

3.1 Random Vectors

Let X_1, \ldots, X_n be random variables on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$:

$$X_i: (\Omega, \mathcal{F}, \mathbb{P}) \to (\mathbb{R}, \mathcal{R}),$$

where \mathcal{R} is the Borel σ -algebra generated by the open sets of \mathbb{R} .

- $\mathbf{X} = (X_1, \dots, X_p)^T$ is called a random vector.
- Similarly the matrix $\mathbf{X} = (X_{ij})_{1 \le i \le p, 1 \le j \le m}$ with random variables X_{ij} as its elements is called a random matrix.
- The joint distribution of a random vector is uniquely described by its multivariate distribution function:

$$F(x_1,\ldots,x_p) = \mathbb{P}(X_1 \le x_1,\ldots,X_p \le x_p), (x_1,\ldots,x_p) \in \mathbb{R}^p.$$

• A random vector $\mathbf{X} = (X_1, \dots, X_p)^T$ is called absolutely continuous if there exists an integrable function $f(x_1, \dots, x_n) \ge 0$ such that:

$$F(x_1,\ldots,x_p) = \int_{-\infty}^{x_p} \cdots \int_{-\infty}^{x_1} f(x_1,\ldots,x_p) \mathrm{d}x_1 \ldots \mathrm{d}x_p.$$

f is called probability density function (pdf) and F is called cumulative distribution function (cdf).

Example 3.1. (Multivariate normal distribution) The multivariate normal (or Gaussian) distribution has the following probability density function:

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right\}$$

with parameters $\boldsymbol{\mu} \in \mathbb{R}^p$, $\boldsymbol{\Sigma} \in \mathbb{R}^{p \times p}$, $\boldsymbol{\Sigma} \succ 0$.

This is denoted by $\mathbf{X} = (X_1, \ldots, X_p)^T \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Note that $\boldsymbol{\Sigma}$ must have full rank. There exists an *n*-dimensional Gaussian random variable, if $\operatorname{rk}(\boldsymbol{\Sigma}) < p$, however it has no density function with respect to p-dimensional Lebesgue measure.

3.2 Expectation and Covariance

Suppose that a random variable $\mathbf{X} = (X_1, \dots, X_p)^T$ is given.

Definition 3.2. (a) The expectation (vector) of a random vector \mathbf{X} , $\mathbb{E}(\mathbf{X})$, is defined by:

$$\mathbb{E}(\mathbf{X}) = (\mathbb{E}(X_1), \dots, \mathbb{E}(X_1))^T$$

(b) The covariance matrix of a random vector \mathbf{X} , $Cov(\mathbf{X})$, is defined by:

$$\operatorname{Cov}(\mathbf{X}) = \mathbb{E}\left((\mathbf{X} - \mathbb{E}(\mathbf{X}))(\mathbf{X} - \mathbb{E}(\mathbf{X}))^T \right).$$

Expectation vector is constructed component-wise of expectations $\mathbb{E}(X_i)$. Covariance matrix has as its (i, j)th element, the covariance value $Cov(X_i, X_j)$:

 $(\operatorname{Cov}(\mathbf{X}))_{i,j} = \operatorname{Cov}(X_i, X_j) = \mathbb{E}\left((X_i - \mathbb{E}(X_i))(X_j - \mathbb{E}(X_j))\right).$

Theorem 3.3. Given random vectors $\mathbf{X} = (X_1, \ldots, X_p)^T$, $\mathbf{Y} = (Y_1, \ldots, Y_p)^T$, the following statements hold:

(a) $\mathbb{E}(\mathbf{A}\mathbf{X} + \mathbf{b}) = \mathbf{A}\mathbb{E}(\mathbf{X}) + \mathbf{b}$

(b)
$$\mathbb{E}(\mathbf{X} + \mathbf{Y}) = \mathbb{E}(\mathbf{X}) + \mathbb{E}(\mathbf{Y})$$

- (c) $\operatorname{Cov}(\mathbf{AX} + \mathbf{b}) = \mathbf{A}\operatorname{Cov}(\mathbf{X})\mathbf{A}^T$
- (d) $\operatorname{Cov}(\mathbf{X} + \mathbf{Y}) = \operatorname{Cov}(\mathbf{X}) + \operatorname{Cov}(\mathbf{Y})$, if \mathbf{X} and \mathbf{Y} are stochastically independent.
- (e) $\operatorname{Cov}(\mathbf{X}) \succeq 0$, *i.e.*, the covariance matrix is non-negative definite.

Proof. Prove (a)-(d) as exercise. To prove the last part, let $\mathbf{a} \in \mathbb{R}^p$ be a vector. We have:

$$\mathbf{a}^T \operatorname{Cov}(\mathbf{X}) \mathbf{a} \stackrel{(c)}{=} \operatorname{Cov}(\mathbf{a}^T \mathbf{X}) = \operatorname{Var}(\mathbf{a}^T \mathbf{X}) \ge 0.$$

• Show that if $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then:

$$\mathbb{E}(\mathbf{X}) = \boldsymbol{\mu}, \operatorname{Cov}(\mathbf{X}) = \boldsymbol{\Sigma}.$$

Theorem 3.4 (Steiner's rule). Given a random vector $\mathbf{X} = (X_1, \ldots, X_p)^T$, it holds:

$$\mathbb{E}\left((\mathbf{X} - \mathbf{b})(\mathbf{X} - \mathbf{b})^T\right) = \operatorname{Cov}(\mathbf{X}) + (\mathbf{b} - \mathbb{E}(\mathbf{X}))(\mathbf{b} - \mathbb{E}(\mathbf{X}))^T.$$

Proof. Let $\boldsymbol{\mu} = \mathbb{E}(\mathbf{X})$. Note that:

$$\mathbb{E}\left((\mathbf{X}-\boldsymbol{\mu})(\mathbf{b}-\boldsymbol{\mu})^{T}\right)=\mathbb{E}\left(\mathbf{X}-\boldsymbol{\mu}\right)(\mathbf{b}-\boldsymbol{\mu})^{T}=0.$$

Using this, we have:

$$\mathbb{E}\left((\mathbf{X} - \mathbf{b})(\mathbf{X} - \mathbf{b})^{T}\right) = \mathbb{E}\left((\mathbf{X} - \boldsymbol{\mu} + \boldsymbol{\mu} - \mathbf{b})(\mathbf{X} - \boldsymbol{\mu} + \boldsymbol{\mu} - \mathbf{b})^{T}\right)$$
$$= \mathbb{E}\left((\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^{T}\right) + \mathbb{E}\left((\boldsymbol{\mu} - \mathbf{b})(\boldsymbol{\mu} - \mathbf{b})^{T}\right)$$
$$= \operatorname{Cov}(\mathbf{X}) + (\mathbf{b} - \mathbb{E}(\mathbf{X}))(\mathbf{b} - \mathbb{E}(\mathbf{X}))^{T}.$$

14

Theorem 3.5. Let X be a random vector with $\mathbb{E}(\mathbf{X}) = \boldsymbol{\mu}$ and $\operatorname{Cov}(\mathbf{X}) = \mathbf{V}$. Then:

$$\mathbb{P}(\mathbf{X} \in \mathrm{Im}(\mathbf{V}) + \boldsymbol{\mu}) = 1.$$

Proof. Let $\ker(\mathbf{V}) = {\mathbf{x} \in \mathbb{R}^p : \mathbf{V}\mathbf{x} = 0}$ be the kernel (or null space) of \mathbf{V} . Assume a basis for the kernel as $\ker(\mathbf{V}) = \langle \mathbf{a}_1, \dots, \mathbf{a}_r \rangle$. It holds for $i = 1, \dots, r$:

$$\operatorname{Var}(\mathbf{a}_i^T \mathbf{X}) = \operatorname{Cov}(\mathbf{a}_i^T \mathbf{X}) = \mathbf{a}_i^T \mathbf{V} \mathbf{a}_i = 0.$$

Since the variance of $\mathbf{a}_i^T \mathbf{X}$ is equal to zero, then $\mathbf{a}_i^T \mathbf{X}$ should be almost surely equal to its expectation which is $\mathbf{a}_i^T \boldsymbol{\mu}$. Hence $\mathbb{P}(\mathbf{a}_i^T \mathbf{X} = \mathbf{a}_i^T \boldsymbol{\mu}) = 1$, i.e., $\mathbb{P}(\mathbf{a}_i^T (\mathbf{X} - \boldsymbol{\mu}) = 0) = 1$. Hence:

$$\mathbb{P}((\mathbf{X} - \boldsymbol{\mu}) \in \mathbf{a}_i^{\perp}) = 1, \forall i = 1, \dots, r.$$

Using the fact that $\mathbb{P}(X \in A) = 1$, $\mathbb{P}(X \in B) = 1 \implies \mathbb{P}(X \in A \cap B) = 1$ (prove as exercise!), it holds that:

$$\mathbb{P}((\mathbf{X}-\boldsymbol{\mu})\in\mathbf{a}_1^{\perp}\cap\cdots\cap\mathbf{a}_r^{\perp})=1.$$

But $\operatorname{Im}(\mathbf{V}) = \ker(\mathbf{V})^{\perp} = \langle \mathbf{a}_1, \dots, \mathbf{a}_r \rangle^{\perp} = \mathbf{a}_1^{\perp} \cap \dots \cap \mathbf{a}_r^{\perp}$. Therefore:

$$\mathbb{P}((\mathbf{X} - \boldsymbol{\mu}) \in \operatorname{Im}(\mathbf{V})) = 1.$$

3.3 Conditional Distribution

Let $\mathbf{X} = (X_1, \dots, X_p)^T$ be a random vector and $\mathbf{X} = (\mathbf{Y}_1, \mathbf{Y}_2)^T$ such that $\mathbf{Y}_1 = (X_1, \dots, X_k)$ and $\mathbf{Y}_2 = (X_{k+1}, \dots, X_p)$. Suppose that \mathbf{X} is absolutely continuous with density $f_{\mathbf{X}}$. Then the conditional density of \mathbf{Y}_1 given $\mathbf{Y}_2 = \mathbf{y}_2$ is given by:

$$f_{\mathbf{Y}_1|\mathbf{Y}_2}(\mathbf{y}_1|\mathbf{y}_2) = \frac{f_{\mathbf{Y}_1,\mathbf{Y}_2}(\mathbf{y}_1,\mathbf{y}_2)}{f_{\mathbf{Y}_2}(\mathbf{y}_2)}, \quad \mathbf{y}_1 \in \mathbb{R}^k.$$

It also holds that:

$$\mathbb{P}(\mathbf{Y}_1 \in B | \mathbf{Y}_2 = \mathbf{y}_2) = \int_B f_{\mathbf{Y}_1 | \mathbf{Y}_2}(\mathbf{y}_1 | \mathbf{y}_2) \mathrm{d}\mathbf{y}_1, \quad \forall B \in \mathcal{R}^k.$$

Theorem 3.6 ([Mur12, Theorem 4.3.1]). Suppose that $(\mathbf{Y}_1, \mathbf{Y}_2) = N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and:

$$oldsymbol{\mu} = egin{bmatrix} oldsymbol{\mu}_1 \ oldsymbol{\mu}_2 \end{bmatrix}, oldsymbol{\Sigma} = egin{bmatrix} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{bmatrix}, oldsymbol{\Lambda} = oldsymbol{\Sigma}^{-1} = egin{bmatrix} oldsymbol{\Lambda}_{11} & oldsymbol{\Lambda}_{12} \ oldsymbol{\Lambda}_{21} & oldsymbol{\Lambda}_{22} \end{bmatrix}.$$

Then:

(a)
$$\mathbf{Y}_1 \sim N_k(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_{11})$$
 and $\mathbf{Y}_2 \sim N_{p-k}(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_{22})$

15

3 Multivariate Distributions and Moments

(b) The conditional density $f_{\mathbf{Y}_1|\mathbf{Y}_2}(\mathbf{y}_1|\mathbf{y}_2)$ is given by multivariate normal distribution $N_k(\boldsymbol{\mu}_{1|2}, \boldsymbol{\Sigma}_{1|2})$ with

$$\begin{split} \boldsymbol{\mu}_{1|2} &= \boldsymbol{\mu}_1 + \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} (\mathbf{y}_2 - \boldsymbol{\mu}_2) \\ &= \boldsymbol{\mu}_1 - \boldsymbol{\Lambda}_{11}^{-1} \boldsymbol{\Lambda}_{12} (\mathbf{y}_2 - \boldsymbol{\mu}_2) \\ &= \boldsymbol{\Sigma}_{1|2} (\boldsymbol{\Lambda}_{11} \boldsymbol{\mu}_1 - \boldsymbol{\Lambda}_{12} (\mathbf{y}_2 - \boldsymbol{\mu}_2)) \\ \boldsymbol{\Sigma}_{1|2} &= \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} = \boldsymbol{\Lambda}_{11}^{-1}. \end{split}$$

Note that $\Sigma_{1|2}$ is the Schur complement, introduced in the previous chapter.