

Figure 2.1: Orthogonal Projection

Definition 2.9. The matrix $\mathbf{Q} \in \mathbb{R}^{n \times n}$ is called projection matrix, or idempotent, if $\mathbf{Q}^{2}=\mathbf{Q}$. It is called orthogonal projection if additionally $\mathbf{Q}^{T}=\mathbf{Q}$.

The linear transformation \mathbf{Q} maps onto $\operatorname{Im}(\mathbf{Q})$, a k-dimensional subspace of \mathbb{R}^{n}. Let $\mathbf{x} \in \mathbb{R}^{n}$, and $\mathbf{y}=\mathbf{Q} \mathbf{x} \in \operatorname{Im}(\mathbf{Q})$. Since \mathbf{Q} is the projection matrix, $\mathbf{Q y}=\mathbf{y}$. For an orthogonal projection, $\mathbf{x}-\mathbf{Q x}$ is orthogonal to all vectors \mathbf{y} in $\operatorname{Im}(\mathbf{Q})$ for every $\mathbf{x} \in \mathbb{R}^{n}$. To see this, note that there is a vector $\mathbf{z} \in \mathbb{R}^{n}$ such that $\mathbf{y}=\mathbf{Q z}$. Then we have:

$$
\mathbf{y}^{T}(\mathbf{x}-\mathbf{Q} \mathbf{x})=\mathbf{z}^{T} \mathbf{Q}^{T}(\mathbf{x}-\mathbf{Q} \mathbf{x}) .
$$

Since for an orthogonal projection $\mathbf{Q}^{T}=\mathbf{Q}$ then:

$$
\mathbf{z}^{T} \mathbf{Q}^{T}(\mathbf{x}-\mathbf{Q} \mathbf{x})=\mathbf{z}^{T} \mathbf{Q}(\mathbf{x}-\mathbf{Q} \mathbf{x})=\mathbf{z}^{T}\left(\mathbf{Q} \mathbf{x}-\mathbf{Q}^{2} \mathbf{x}\right)=\mathbf{z}^{T}(\mathbf{Q} \mathbf{x}-\mathbf{Q} \mathbf{x})=0 .
$$

Therefore $\mathbf{y}^{T}(\mathbf{x}-\mathbf{Q x})=0$ and $\mathbf{x}-\mathbf{Q x}$ is orthogonal to \mathbf{y}.
Lemma 2.10. Let $\mathbf{M}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{T}$ be spectral decomposition of $\mathbf{M} \in \mathbb{R}^{n \times n}$ and symmetric. For $k \leq n$, the matrix $\mathbf{Q}=\sum_{i=1}^{k} \mathbf{v}_{i} \mathbf{v}_{i}^{T}$ is an orthogonal projection onto $\operatorname{Im}(\mathbf{Q})=<$ $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}>$.

Proof. For $\mathbf{x} \in \mathbb{R}^{n}$, we have:

$$
\mathbf{Q} \mathbf{x}=\sum_{i=1}^{k} \mathbf{v}_{i} \mathbf{v}_{i}^{T} x=\sum_{i=1}^{k}\left(\mathbf{v}_{i}^{T} \mathbf{x}\right) \mathbf{v}_{i}=\sum_{i=1}^{k} \gamma_{i} \mathbf{v}_{i} \in \operatorname{Im}(\mathbf{Q})
$$

Moreover:

$$
\mathbf{Q}^{2}=\left(\sum_{i=1}^{k} \mathbf{v}_{i} \mathbf{v}_{i}^{T}\right)\left(\sum_{i=1}^{k} \mathbf{v}_{i} \mathbf{v}_{i}^{T}\right)=\sum_{i=1}^{k} \mathbf{v}_{i} \mathbf{v}_{i}^{T}=\mathbf{Q}
$$

Finally \mathbf{Q} is symmetric and therefore it is an orthogonal projection.

- Let \mathbf{Q} be an orthogonal projection on $\operatorname{Im}(\mathbf{Q})$, Then $\mathbf{I}-\mathbf{Q}$ is an orthonormal projection onto $\operatorname{ker}(\mathbf{Q})$.
$\operatorname{ker}(\mathbf{Q})$ denotes the kernel of \mathbf{Q}, and $\operatorname{Im}(\mathbf{Q})$ denotes the image of \mathbf{Q}.

$$
(\mathbf{I}-\mathbf{Q})^{2}=(\mathbf{I}-\mathbf{Q})(\mathbf{I}-\mathbf{Q})=\mathbf{I}-2 \mathbf{Q}+\mathbf{Q}^{2}=\mathbf{I}-\mathbf{Q}
$$

Therefore $\mathbf{I}-\mathbf{Q}$ is a projection matrix. Since \mathbf{Q} is symmetric, so is $\mathbf{I}-\mathbf{Q}$ and hence an orthogonal projection. Let $\mathbf{y} \in \operatorname{ker}(\mathbf{Q})$, i.e., $\mathbf{Q y}=\mathbf{0}$. Then:

$$
(\mathbf{I}-\mathbf{Q}) \mathbf{y}=\mathbf{y}-\mathbf{Q} \mathbf{y}=\mathbf{y} \in \operatorname{Im}(\mathbf{I}-\mathbf{Q}) .
$$

Therefore $\operatorname{ker}(\mathbf{Q}) \subseteq \operatorname{Im}(\mathbf{I}-\mathbf{Q})$. On the other hand, suppose that $y \in \operatorname{Im}(\mathbf{I}-\mathbf{Q})$. There is $\mathbf{x} \in \mathbb{R}^{n}$ such that $\mathbf{y}=(\mathbf{I}-\mathbf{Q}) \mathbf{x}$. We have:

$$
\mathbf{Q} \mathbf{y}=\mathbf{Q}(\mathbf{I}-\mathbf{Q}) \mathbf{x}=\mathbf{Q} \mathbf{x}-\mathbf{Q}^{2} \mathbf{x}=\mathbf{Q} \mathbf{x}-\mathbf{Q} \mathbf{x}=\mathbf{0} .
$$

So $\mathbf{y} \in \operatorname{ker}(\mathbf{Q})$ and therefore $\operatorname{Im}(\mathbf{I}-\mathbf{Q}) \subseteq \operatorname{ker}(\mathbf{Q})$. So $\operatorname{Im}(\mathbf{I}-\mathbf{Q})=\operatorname{ker}(\mathbf{Q})$.

- Define \mathbf{E}_{n} as follows:

$$
\mathbf{E}_{n}=\mathbf{I}_{n}-\frac{1}{n} \mathbf{1}_{n \times n}=\left[\begin{array}{cccc}
1-\frac{1}{n} & -\frac{1}{n} & \ldots & -\frac{1}{n} \\
-\frac{1}{n} & 1-\frac{1}{n} & \ldots & -\frac{1}{n} \\
\vdots & \vdots & \ddots & \vdots \\
-\frac{1}{n} & -\frac{1}{n} & \ldots & 1-\frac{1}{n}
\end{array}\right]
$$

Then \mathbf{E}_{n} is an orthogonal projection onto $\mathbf{1}_{n}^{\perp}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{1}_{n}^{T} \mathbf{x}=0\right\}$ where $\mathbf{1}_{n}$ is all one vector in \mathbb{R}^{n}.
See that for all $\mathbf{x} \in \mathbb{R}^{n}$:

$$
\mathbf{1}_{n}^{T} \mathbf{E}_{n} \mathbf{x}=\mathbf{1}_{n}^{T}\left(\mathbf{I}_{n}-\frac{1}{n} \mathbf{1}_{n \times n}\right) \mathbf{x}=\left(\mathbf{1}_{n}^{T}-\mathbf{1}_{n}^{T}\right) \mathbf{x}=\mathbf{0} .
$$

Therefore each vector in $\operatorname{Im}\left(\mathbf{E}_{n}\right)$ is orthogonal to $\mathbf{1}_{n}$.
Note that $\frac{1}{n} \mathbf{1}_{n \times n} \times \frac{1}{n} \mathbf{1}_{n \times n}=\frac{1}{n} \mathbf{1}_{n \times n}$ and $\frac{1}{n} \mathbf{1}_{n \times n}$ is symmetric. Therefore it is an orthogonal projection. Moreover its image is a one dimensional subspace spanned by $\mathbf{1}_{n}$. From the previous item, $\mathbf{I}_{n}-\frac{1}{n} \mathbf{1}_{n \times n}$ is also an orthogonal projection onto the kernel of $\frac{1}{n} \mathbf{1}_{n \times n}$ which is $\mathbf{1}_{n}^{\perp}$.

Theorem 2.11 (Inverse and determinant of partitioned matrix). Let $\mathbf{M}=\left[\begin{array}{cc}\mathbf{A} & \mathbf{B} \\ \mathbf{B}^{T} & \mathbf{C}\end{array}\right]$ be a symmetric, invertible (regular) and \mathbf{A} is also invertible (regular). Then:
(a) The inverse matrix of \mathbf{M} is given by:

$$
\mathbf{M}^{-1}=\left[\begin{array}{cc}
\mathbf{A}^{-1}+\mathbf{F} \mathbf{E}^{-1} \mathbf{F}^{T} & -\mathbf{F E}^{-1} \\
-\mathbf{E}^{-1} \mathbf{F}^{T} & \mathbf{E}^{-1}
\end{array}\right]
$$

where \mathbf{E} is the Schur complement given by $\mathbf{E}=\mathbf{C}-\mathbf{B}^{T} \mathbf{A}^{-1} \mathbf{B}$ and $\mathbf{F}=\mathbf{A}^{-1} \mathbf{B}$.

Figure 2.2: Orthogonal Projection of \mathbf{E}_{2}
(b) The determinant of \mathbf{M} is given by:

$$
\operatorname{det}(\mathbf{M})=\operatorname{det}(\mathbf{A}) \operatorname{det}\left(\mathbf{C}-\mathbf{B}^{T} \mathbf{A}^{-1} \mathbf{B}\right) .
$$

There is also an extension of this theorem for general case where $\mathbf{M}=\left[\begin{array}{ll}\mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D}\end{array}\right]$ (see [Mur12, p.118]).

Definition 2.12 (Isometry). A linear transformation $\mathbf{M}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called an isometry if $\mathbf{x}^{T} \mathbf{x}=(\mathbf{M x})^{T}(\mathbf{M x})$ for all $\mathbf{x} \in \mathbb{R}^{n}$.

Some properties of isometries are as follows:

- If \mathbf{U} and \mathbf{V} are isometries, then the product $\mathbf{U V}$ is also an isometry.
- If \mathbf{U} is an isometry, $|\operatorname{det}(\mathbf{U})|=1$.
- If \mathbf{U} is an isometry, then $|\lambda(\mathbf{U})|=1$ for all eigenvalues of \mathbf{U}.

3 Multivariate Distributions and Moments

3.1 Random Vectors

Let X_{1}, \ldots, X_{n} be random variables on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$:

$$
X_{i}:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow(\mathbb{R}, \mathcal{R})
$$

where \mathcal{R} is the Borel σ-algebra generated by the open sets of \mathbb{R}.

- $\mathbf{X}=\left(X_{1}, \ldots, X_{p}\right)^{T}$ is called a random vector.
- Similarly the matrix $\mathbf{X}=\left(X_{i j}\right)_{1 \leq i \leq p, 1 \leq j \leq m}$ with random variables $X_{i j}$ as its elements is called a random matrix.
- The joint distribution of a random vector is uniquely described by its multivariate distribution function:

$$
F\left(x_{1}, \ldots, x_{p}\right)=\mathbb{P}\left(X_{1} \leq x_{1}, \ldots, X_{p} \leq x_{p}\right),\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{R}^{p}
$$

- A random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{p}\right)^{T}$ is called absolutely continuous if there exists an integrable function $f\left(x_{1}, \ldots, x_{n}\right) \geq 0$ such that:

$$
F\left(x_{1}, \ldots, x_{p}\right)=\int_{-\infty}^{x_{p}} \cdots \int_{-\infty}^{x_{1}} f\left(x_{1}, \ldots, x_{p}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{p}
$$

f is called probability density function (pdf) and F is called cumulative distribution function (cdf).

Example 3.1. (Multivariate normal distribution) The multivariate normal (or Gaussian) distribution has the following probability density function:

$$
f(\mathbf{x})=\frac{1}{(2 \pi)^{p / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}
$$

with parameters $\boldsymbol{\mu} \in \mathbb{R}^{p}, \boldsymbol{\Sigma} \in \mathbb{R}^{p \times p}, \boldsymbol{\Sigma} \succ 0$.
This is denoted by $\mathbf{X}=\left(X_{1}, \ldots, X_{p}\right)^{T} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Note that $\boldsymbol{\Sigma}$ must have full rank. There exists an n-dimensional Gaussian random variable, if $\operatorname{rk}(\boldsymbol{\Sigma})<p$, however it has no density function with respect to p - dimensional Lebesgue measure.

3.2 Expectation and Covariance

Suppose that a random variable $\mathbf{X}=\left(X_{1}, \ldots, X_{p}\right)^{T}$ is given.
Definition 3.2. (a) The expectation (vector) of a random vector $\mathbf{X}, \mathbb{E}(\mathbf{X})$, is defined by:

$$
\mathbb{E}(\mathbf{X})=\left(\mathbb{E}\left(X_{1}\right), \ldots, \mathbb{E}\left(X_{1}\right)\right)^{T}
$$

(b) The covariance matrix of a random vector $\mathbf{X}, \operatorname{Cov}(\mathbf{X})$, is defined by:

$$
\operatorname{Cov}(\mathbf{X})=\mathbb{E}\left((\mathbf{X}-\mathbb{E}(\mathbf{X}))(\mathbf{X}-\mathbb{E}(\mathbf{X}))^{T}\right)
$$

Expectation vector is constructed component-wise of expectations $\mathbb{E}\left(X_{i}\right)$. Covariance matrix has as its (i, j) th element, the covariance value $\operatorname{Cov}\left(X_{i}, X_{j}\right)$:

$$
(\operatorname{Cov}(\mathbf{X}))_{i, j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)=\mathbb{E}\left(\left(X_{i}-\mathbb{E}\left(X_{i}\right)\right)\left(X_{j}-\mathbb{E}\left(X_{j}\right)\right)\right) .
$$

Theorem 3.3. Given random vectors $\mathbf{X}=\left(X_{1}, \ldots, X_{p}\right)^{T}, \mathbf{Y}=\left(Y_{1}, \ldots, Y_{p}\right)^{T}$, the following statements hold:
(a) $\mathbb{E}(\mathbf{A X}+\mathbf{b})=\mathbf{A} \mathbb{E}(\mathbf{X})+\mathbf{b}$
(b) $\mathbb{E}(\mathbf{X}+\mathbf{Y})=\mathbb{E}(\mathbf{X})+\mathbb{E}(\mathbf{Y})$
(c) $\operatorname{Cov}(\mathbf{A X}+\mathbf{b})=\mathbf{A} \operatorname{Cov}(\mathbf{X}) \mathbf{A}^{T}$
(d) $\operatorname{Cov}(\mathbf{X}+\mathbf{Y})=\operatorname{Cov}(\mathbf{X})+\operatorname{Cov}(\mathbf{Y})$, if \mathbf{X} and \mathbf{Y} are stochastically independent.
(e) $\operatorname{Cov}(\mathbf{X}) \succeq 0$, i.e., the covariance matrix is non-negative definite.

Proof. Prove (a)-(d) as exercise. To prove the last part, let $\mathbf{a} \in \mathbb{R}^{p}$ be a vector. We have:

$$
\mathbf{a}^{T} \operatorname{Cov}(\mathbf{X}) \mathbf{a} \stackrel{(c)}{=} \operatorname{Cov}\left(\mathbf{a}^{T} \mathbf{X}\right)=\operatorname{Var}\left(\mathbf{a}^{T} \mathbf{X}\right) \geq 0
$$

- Show that if $\mathbf{X} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then:

$$
\mathbb{E}(\mathbf{X})=\boldsymbol{\mu}, \operatorname{Cov}(\mathbf{X})=\boldsymbol{\Sigma}
$$

Theorem 3.4 (Steiner's rule). Given a random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{p}\right)^{T}$, it holds:

$$
\mathbb{E}\left((\mathbf{X}-\mathbf{b})(\mathbf{X}-\mathbf{b})^{T}\right)=\operatorname{Cov}(\mathbf{X})+(\mathbf{b}-\mathbb{E}(\mathbf{X}))(\mathbf{b}-\mathbb{E}(\mathbf{X}))^{T} .
$$

Proof. Let $\boldsymbol{\mu}=\mathbb{E}(\mathbf{X})$. Note that:

$$
\mathbb{E}\left((\mathbf{X}-\boldsymbol{\mu})(\mathbf{b}-\boldsymbol{\mu})^{T}\right)=\mathbb{E}(\mathbf{X}-\boldsymbol{\mu})(\mathbf{b}-\boldsymbol{\mu})^{T}=0 .
$$

Using this, we have:

$$
\begin{aligned}
\mathbb{E}\left((\mathbf{X}-\mathbf{b})(\mathbf{X}-\mathbf{b})^{T}\right) & =\mathbb{E}\left((\mathbf{X}-\boldsymbol{\mu}+\boldsymbol{\mu}-\mathbf{b})(\mathbf{X}-\boldsymbol{\mu}+\boldsymbol{\mu}-\mathbf{b})^{T}\right) \\
& =\mathbb{E}\left((\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{T}\right)+\mathbb{E}\left((\boldsymbol{\mu}-\mathbf{b})(\boldsymbol{\mu}-\mathbf{b})^{T}\right) \\
& =\operatorname{Cov}(\mathbf{X})+(\mathbf{b}-\mathbb{E}(\mathbf{X}))(\mathbf{b}-\mathbb{E}(\mathbf{X}))^{T} .
\end{aligned}
$$

Theorem 3.5. Let \mathbf{X} be a random vector with $\mathbb{E}(\mathbf{X})=\boldsymbol{\mu}$ and $\operatorname{Cov}(\mathbf{X})=\mathbf{V}$. Then:

$$
\mathbb{P}(\mathbf{X} \in \operatorname{Im}(\mathbf{V})+\boldsymbol{\mu})=1
$$

Proof. Let $\operatorname{ker}(\mathbf{V})=\left\{\mathbf{x} \in \mathbb{R}^{p}: \mathbf{V} \mathbf{x}=0\right\}$ be the kernel (or null space) of \mathbf{V}. Assume a basis for the kernel as $\operatorname{ker}(\mathbf{V})=<\mathbf{a}_{1}, \ldots, \mathbf{a}_{r}>$. It holds for $i=1, \ldots, r$:

$$
\operatorname{Var}\left(\mathbf{a}_{i}^{T} \mathbf{X}\right)=\operatorname{Cov}\left(\mathbf{a}_{i}^{T} \mathbf{X}\right)=\mathbf{a}_{i}^{T} \mathbf{V} \mathbf{a}_{i}=0
$$

Since the variance of $\mathbf{a}_{i}^{T} \mathbf{X}$ is equal to zero, then $\mathbf{a}_{i}^{T} \mathbf{X}$ should be almost surely equal to its expectation which is $\mathbf{a}_{i}^{T} \boldsymbol{\mu}$. Hence $\mathbb{P}\left(\mathbf{a}_{i}^{T} \mathbf{X}=\mathbf{a}_{i}^{T} \boldsymbol{\mu}\right)=1$, i.e., $\mathbb{P}\left(\mathbf{a}_{i}^{T}(\mathbf{X}-\boldsymbol{\mu})=0\right)=1$. Hence:

$$
\mathbb{P}\left((\mathbf{X}-\boldsymbol{\mu}) \in \mathbf{a}_{i}^{\perp}\right)=1, \forall i=1, \ldots, r
$$

Using the fact that $\mathbb{P}(X \in A)=1, \mathbb{P}(X \in B)=1 \Longrightarrow \mathbb{P}(X \in A \cap B)=1$ (prove as exercise!), it holds that:

$$
\mathbb{P}\left((\mathbf{X}-\boldsymbol{\mu}) \in \mathbf{a}_{1}^{\perp} \cap \cdots \cap \mathbf{a}_{r}^{\perp}\right)=1
$$

But $\operatorname{Im}(\mathbf{V})=\operatorname{ker}(\mathbf{V})^{\perp}=<\mathbf{a}_{1}, \ldots, \mathbf{a}_{r}>^{\perp}=\mathbf{a}_{1}^{\perp} \cap \cdots \cap \mathbf{a}_{r}^{\perp}$. Therefore:

$$
\mathbb{P}((\mathbf{X}-\boldsymbol{\mu}) \in \operatorname{Im}(\mathbf{V}))=1
$$

3.3 Conditional Distribution

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{p}\right)^{T}$ be a random vector and $\mathbf{X}=\left(\mathbf{Y}_{1}, \mathbf{Y}_{2}\right)^{T}$ such that $\mathbf{Y}_{1}=$ $\left(X_{1}, \ldots, X_{k}\right)$ and $\mathbf{Y}_{2}=\left(X_{k+1}, \ldots, X_{p}\right)$. Suppose that \mathbf{X} is absolutely continuous with density $f_{\mathbf{X}}$. Then the conditional density of \mathbf{Y}_{1} given $\mathbf{Y}_{2}=\mathbf{y}_{2}$ is given by:

$$
f_{\mathbf{Y}_{1} \mid \mathbf{Y}_{2}}\left(\mathbf{y}_{1} \mid \mathbf{y}_{2}\right)=\frac{f_{\mathbf{Y}_{1}, \mathbf{Y}_{2}}\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)}{f_{\mathbf{Y}_{2}}\left(\mathbf{y}_{2}\right)}, \quad \mathbf{y}_{1} \in \mathbb{R}^{k}
$$

It also holds that:

$$
\mathbb{P}\left(\mathbf{Y}_{1} \in B \mid \mathbf{Y}_{2}=\mathbf{y}_{2}\right)=\int_{B} f_{\mathbf{Y}_{1} \mid \mathbf{Y}_{2}}\left(\mathbf{y}_{1} \mid \mathbf{y}_{2}\right) \mathrm{d} \mathbf{y}_{1}, \quad \forall B \in \mathcal{R}^{k}
$$

Theorem 3.6 ([Mur12, Theorem 4.3.1]). Suppose that $\left(\mathbf{Y}_{1}, \mathbf{Y}_{2}\right)=N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and:

$$
\boldsymbol{\mu}=\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right], \boldsymbol{\Sigma}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right], \boldsymbol{\Lambda}=\boldsymbol{\Sigma}^{-1}=\left[\begin{array}{ll}
\boldsymbol{\Lambda}_{11} & \boldsymbol{\Lambda}_{12} \\
\boldsymbol{\Lambda}_{21} & \boldsymbol{\Lambda}_{22}
\end{array}\right]
$$

Then:
(a) $\mathbf{Y}_{1} \sim N_{k}\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{11}\right)$ and $\mathbf{Y}_{2} \sim N_{p-k}\left(\boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{22}\right)$

3 Multivariate Distributions and Moments
(b) The conditional density $f_{\mathbf{Y}_{1} \mid \mathbf{Y}_{2}}\left(\mathbf{y}_{1} \mid \mathbf{y}_{2}\right)$ is given by multivariate normal distribution $N_{k}\left(\boldsymbol{\mu}_{1 \mid 2}, \boldsymbol{\Sigma}_{1 \mid 2}\right)$ with

$$
\begin{aligned}
\boldsymbol{\mu}_{1 \mid 2} & =\boldsymbol{\mu}_{1}+\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}\left(\mathbf{y}_{2}-\boldsymbol{\mu}_{2}\right) \\
& =\boldsymbol{\mu}_{1}-\boldsymbol{\Lambda}_{11}^{-1} \boldsymbol{\Lambda}_{12}\left(\mathbf{y}_{2}-\boldsymbol{\mu}_{2}\right) \\
& =\boldsymbol{\Sigma}_{1 \mid 2}\left(\boldsymbol{\Lambda}_{11} \boldsymbol{\mu}_{1}-\boldsymbol{\Lambda}_{12}\left(\mathbf{y}_{2}-\boldsymbol{\mu}_{2}\right)\right) \\
\boldsymbol{\Sigma}_{1 \mid 2} & =\boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}=\boldsymbol{\Lambda}_{11}^{-1} .
\end{aligned}
$$

Note that $\boldsymbol{\Sigma}_{1 \mid 2}$ is the Schur complement, introduced in the previous chapter.

