
5 Classification and Clustering

Classification and clustering are one of the central tasks in machine learning. Given a
set of data points, the purpose is to classify the points into subgroups, which express
closeness or similarity of the points and which are represented by a cluster head.

5.1 Discriminant Analysis

Suppose that g populations/groups/classes C1, . . . , Cg are given, each represented by a
p.d.f. fi(x) on Rp, i = 1, . . . , g.
A discriminant rule divides Rp into disjoint regions R1, . . . , Rg, ∪p

i=1Ri = Rp. The
rule is defined by:

allocate some observation x to Ci is x ∈ Ri

Often the p.d.f. is completely unknown or the parameters must be estimated from a
training set x1, . . . , xn ∈ Rp with known class allocation.

5.1.1 Fisher’s Linear Discriminant Function

Fix a training set x1, . . . ,xn with known classification. Let x be some observation. Find
a linear discriminant rule aTx such that x is allocated to some class in an optimal way.
Hence, determine a linear transformation a ∈ Rp such that the ration of the between-

groups sum of squares and the within group sum of squares is minimized.
Let X = [x1, . . . ,xn]

T be samples from g groups C1, . . . , Cg. Define Xl = [xj ]j∈Cl
and

nl = |{j : 1 ≤ j ≤ n; j ∈ Cl}|. The average of the training set is given by:

x =
1

n

n�

i=1

xi ∈ Rp

The average over the group Cl is given by:

xl =
1

nl

�

j∈Cl

xj ∈ Rp.

Let a ∈ Rp be the linear discriminant of data; we have:

y =



y1
...
yn


 = XTa ∈ Rn,yl = (yj)j∈Cl

.
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5 Classification and Clustering

Similarly define the general average and between the group average as follows:

y =
1

n

n�

i=1

yi; yl =
1

nl

�

j∈Cl

yj .

Note that:

n�

i=1

(yi − y)2 =

g�

l=1

�

j∈Cl

(yj − yl + yl − y)2

(a)
=

g�

l=1


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j∈Cl

(yj − yl)
2 +

�

j∈Cl

(yl − y)2




=

g�

l=1

�

j∈Cl

(yj − yl)
2 +

g�

l=1

nl(yl − y)2

where (a) follows from a similar argument behind Steiner’s rule -Theorem 3.3.
�g

l=1

�
j∈Cl

(yj−
yl)

2 is the sum of squares within groups and
�g

l=1 nl(yl − y)2 is the sum of squares be-
tween groups.
Let En and Enl

= El, l = 1, . . . , g bet centering operators. Using matrix notation, we
have:

g�

l=1

�

j∈Cl

(yj − yl)
2 =

g�

l=1

yT
l Elyl

=

g�

l=1

aTXT
l ElXla

= aT (

g�

l=1

XT
l ElXl)a = aTWa.

where W =
�g

l=1X
T
l ElXl. Similarly:

g�

l=1

nl(yl − y)2 =

g�

l=1

nl(a
T (xl − x))2

=

g�

l=1

nla
T (xl − x)(xl − x)Ta

= aT

�
g�

l=1

nl(xl − x)(xl − x)T

�
a = aTBa,

where B =
�g

l=1 nl(xl − x)(xl − x)T . Linear discriminant analysis requires:

max
a∈Rp

aTBa

aTWa
(�)
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5.1 Discriminant Analysis

Theorem 5.1. The maximum value of (�) is attained at the eigenvector of W−1B
corresponding to the largest eigenvalue.

Proof. Assuming a = W−1/2b, we have

max
a∈Rp

aTBa

aTWa
= max

b∈Rp

bTW−1/2BW−1/2b

bTb
= λmax(W

−1/2BW−1/2),

where the last part results from Theorem 2.4. Furthermore W−1/2BW−1/2 and W−1B
have the same eigenvalues, since:

W−1Bv = λv ⇐⇒ W−1/2Bv = λW1/2v ⇐⇒ W−1/2BW−1/2W1/2v = λW1/2v.

Therefore the two matrices have the same eigenvalues. Moreover suppose that v is the
eigenvector of W−1B corresponding to λmax. Then we have:

vTBv

vTWv
=

vTBv

vTW( 1
λmax

W−1Bv)
= λmax .

The linear function aTx is called Fisher’s linear discriminant function or the first
canonical variate. The ratio is invariant with the respect to scaling of a.
Application of the linear discriminant analysis is as follows.

• Given the training set x1, . . . ,xn ∈ Rp with known groups, compute the optimum
a from Theorem 5.1.

• For a new observation x, compute aTx.

• Allocate x to the group with closest value of aTxl = yl. Discriminant rule can be
formulated as follows:

Discriminant Rule: Allocate x to the group l if |aTx−aTxl| ≤ |aTx−aTxj| for
all j = 1, . . . , g.

Fisher’s discriminant function is most important in the special case of g = 2, where
there are two groups of size n1 and n2 with n = n1 + n2. In this case we have:

B = n1(x1 − x)(x1 − x)T + n2(x2 − x)(x2 − x)T

= n1(x1 −
n1

n
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n
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n
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n
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T + n2(x2 −
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= n1(
n2
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n2
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x2)(

n2
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n
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T

=
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T =
n1n2

n
ddT ,
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where d = x1 −x2. Therefore B has rank one and only one eigenvalue that is not equal
to 0. Therefore W−1B has only one non-zero eigenvalue, which is given by:

tr(W−1B) =
n1n2

n
dTW−1d.

Since W is nonnegative definite, the above value is nonnegative and therefore is the
maximum eigenvalue. Note that d is an eigenvector of B. We have:

(W−1B)W−1d = W−1(
n1n2

n
ddT )W−1d

=
n1n2

n
W−1d

�
dTW−1d

�

=
�n1n2

n
dTW−1d

�
W−1d.

ThereforeW−1d is an eigenvector ofW−1B corresponding to the eigenvalue n1n2
n dTW−1d.

Discriminant rule becomes:

• Allocate x to C1 if dTW−1(x− 1
2(x1 + x2)) > 0.

a = W−1d is normal to the discriminating hyperplane between the classes.

Fischer’s approach is distribution free. It is based on the general principle that the
between-groups sum of squares is large relative to the within-groups sum of squares.
This is measured by the quotient of these two quantities.

5.1.2 Gaussian ML Discriminant Rule

Maximum likelihood rule allocates observation x to the class Cl which maximizes the
likelihood Ll(x) = maxj Lj(x). Assume that the class distributions are Gaussian and
known as Np(µl,Σl) with µl and Σl fixed and with densities:

fl(u) =
1

(2π)p/2|Σl|1/2
exp

�
−1

2
(u− µl)

TΣ−1
l (u− µl)

�
,u ∈ Rp.

The objective of ML discriminant rule would be to maximize fl(x) over l given x.

Theorem 5.2. The ML discriminant allocates x to class Cl which maximizes fl(x) over
l = 1, . . . , g.

(a) If Σl = Σ for all l, then the ML rule allocates x to Cl which minimizes the Maha-
lanobis distance:

(x− µl)
TΣ−1(x− µl).

(b) If g = 2, and Σ1 = Σ2 = Σ, then the ML rule allocates x to the class C1 if

αT (x− µ) > 0,

where α = Σ−1(µ1 − µ2) and µ = 1
2(µ1 + µ2).
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5.1 Discriminant Analysis

Proof. Part (a) follows directly from the definition of ML discriminant rule. The ML
discriminant finds the class l such that:

l = arg max
1≤j≤g

fj(x).

Since Σ is fixed for all classes, the maximization of fl(x) amounts to maximization of
exponent which is minimization of the Mahalanobis distance. Part (b) is an exercise.

Note that the rule (b) is analogue to Fisher’s discriminant rule with parameters µ1,
µ2 and Σ substituting estimates x1, x2 and W.
Application in practice: Σl and µl are mostly not known. One can estimate these

parameters from a training set with known allocations as Σ̂l and µ̂l for l = 1, . . . , g.
Substitute Σl and µl by their ML estimates Σ̂l and µ̂l and compute the ML discriminant
rule.
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