5 Classification and Clustering

Classification and clustering are one of the central tasks in machine learning. Given a set of data points, the purpose is to classify the points into subgroups, which express closeness or similarity of the points and which are represented by a cluster head.

5.1 Discriminant Analysis

Suppose that g populations/groups/classes C_1, \ldots, C_g are given, each represented by a p.d.f. $f_i(\mathbf{x})$ on \mathbb{R}^p , $i = 1, \ldots, g$.

A discriminant rule divides \mathbb{R}^p into disjoint regions $R_1, \ldots, R_g, \cup_{i=1}^p R_i = \mathbb{R}^p$. The rule is defined by:

allocate some observation \mathbf{x} to C_i is $\mathbf{x} \in R_i$

Often the p.d.f. is completely unknown or the parameters must be estimated from a training set $x_1, \ldots, x_n \in \mathbb{R}^p$ with known class allocation.

5.1.1 Fisher's Linear Discriminant Function

Fix a training set $\mathbf{x}_1, \ldots, \mathbf{x}_n$ with known classification. Let \mathbf{x} be some observation. Find a linear discriminant rule $\mathbf{a}^T \mathbf{x}$ such that \mathbf{x} is allocated to some class in an optimal way.

Hence, determine a linear transformation $\mathbf{a} \in \mathbb{R}^p$ such that the ration of the betweengroups sum of squares and the within group sum of squares is minimized.

Let $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]^T$ be samples from g groups C_1, \dots, C_g . Define $\mathbf{X}_l = [\mathbf{x}_j]_{j \in C_l}$ and $n_l = |\{j : 1 \le j \le n; j \in C_l\}|$. The average of the training set is given by:

$$\overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \in \mathbf{R}^p$$

The average over the group C_l is given by:

$$\overline{\mathbf{x}}_l = \frac{1}{n_l} \sum_{j \in C_l} \mathbf{x}_j \in \mathbf{R}^p.$$

Let $\mathbf{a} \in \mathbb{R}^p$ be the linear discriminant of data; we have:

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \mathbf{X}^T \mathbf{a} \in \mathbb{R}^n, \mathbf{y}_l = (y_j)_{j \in C_l}.$$

37

5 Classification and Clustering

Similarly define the general average and between the group average as follows:

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i; \overline{y}_l = \frac{1}{n_l} \sum_{j \in C_l} y_j.$$

Note that:

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{l=1}^{g} \sum_{j \in C_l} (y_j - \overline{y}_l + \overline{y}_l - \overline{y})^2$$
$$\stackrel{(a)}{=} \sum_{l=1}^{g} \left[\sum_{j \in C_l} (y_j - \overline{y}_l)^2 + \sum_{j \in C_l} (\overline{y}_l - \overline{y})^2 \right]$$
$$= \sum_{l=1}^{g} \sum_{j \in C_l} (y_j - \overline{y}_l)^2 + \sum_{l=1}^{g} n_l (\overline{y}_l - \overline{y})^2$$

where (a) follows from a similar argument behind Steiner's rule -Theorem 3.3. $\sum_{l=1}^{g} \sum_{j \in C_l} (y_j - \overline{y}_l)^2$ is the sum of squares within groups and $\sum_{l=1}^{g} n_l (\overline{y}_l - \overline{y})^2$ is the sum of squares between groups.

Let \mathbf{E}_n and $\mathbf{E}_{n_l} = \mathbf{E}_l$, l = 1, ..., g bet centering operators. Using matrix notation, we have:

$$\begin{split} \sum_{l=1}^{g} \sum_{j \in C_l} (y_j - \overline{y}_l)^2 &= \sum_{l=1}^{g} \mathbf{y}_l^T \mathbf{E}_l \mathbf{y}_l \\ &= \sum_{l=1}^{g} \mathbf{a}^T \mathbf{X}_l^T \mathbf{E}_l \mathbf{X}_l \mathbf{a} \\ &= \mathbf{a}^T (\sum_{l=1}^{g} \mathbf{X}_l^T \mathbf{E}_l \mathbf{X}_l) \mathbf{a} = \mathbf{a}^T \mathbf{W} \mathbf{a}. \end{split}$$

where $\mathbf{W} = \sum_{l=1}^{g} \mathbf{X}_{l}^{T} \mathbf{E}_{l} \mathbf{X}_{l}$. Similarly:

$$\begin{split} \sum_{l=1}^{g} n_l (\overline{y}_l - \overline{y})^2 &= \sum_{l=1}^{g} n_l (\mathbf{a}^T (\overline{\mathbf{x}}_{\mathbf{l}} - \overline{\mathbf{x}}))^2 \\ &= \sum_{l=1}^{g} n_l \mathbf{a}^T (\overline{\mathbf{x}}_{\mathbf{l}} - \overline{\mathbf{x}}) (\overline{\mathbf{x}}_{\mathbf{l}} - \overline{\mathbf{x}})^T \mathbf{a} \\ &= \mathbf{a}^T \left(\sum_{l=1}^{g} n_l (\overline{\mathbf{x}}_{\mathbf{l}} - \overline{\mathbf{x}}) (\overline{\mathbf{x}}_{\mathbf{l}} - \overline{\mathbf{x}})^T \right) \mathbf{a} = \mathbf{a}^T \mathbf{B} \mathbf{a}, \end{split}$$

where $\mathbf{B} = \sum_{l=1}^{g} n_l (\overline{\mathbf{x}}_l - \overline{\mathbf{x}}) (\overline{\mathbf{x}}_l - \overline{\mathbf{x}})^T$. Linear discriminant analysis requires:

$$\max_{\mathbf{a}\in\mathbb{R}^p}\frac{\mathbf{a}^T\mathbf{B}\mathbf{a}}{\mathbf{a}^T\mathbf{W}\mathbf{a}}\quad(\star)$$

38

Theorem 5.1. The maximum value of (\star) is attained at the eigenvector of $\mathbf{W}^{-1}\mathbf{B}$ corresponding to the largest eigenvalue.

Proof. Assuming $\mathbf{a} = \mathbf{W}^{-1/2}\mathbf{b}$, we have

$$\max_{\mathbf{a}\in\mathbb{R}^p}\frac{\mathbf{a}^T\mathbf{B}\mathbf{a}}{\mathbf{a}^T\mathbf{W}\mathbf{a}} = \max_{\mathbf{b}\in\mathbb{R}^p}\frac{\mathbf{b}^T\mathbf{W}^{-1/2}\mathbf{B}\mathbf{W}^{-1/2}\mathbf{b}}{\mathbf{b}^T\mathbf{b}} = \lambda_{\max}(\mathbf{W}^{-1/2}\mathbf{B}\mathbf{W}^{-1/2}),$$

where the last part results from Theorem 2.4. Furthermore $\mathbf{W}^{-1/2}\mathbf{B}\mathbf{W}^{-1/2}$ and $\mathbf{W}^{-1}\mathbf{B}$ have the same eigenvalues, since:

$$\mathbf{W}^{-1}\mathbf{B}\mathbf{v} = \lambda\mathbf{v} \iff \mathbf{W}^{-1/2}\mathbf{B}\mathbf{v} = \lambda\mathbf{W}^{1/2}\mathbf{v} \iff \mathbf{W}^{-1/2}\mathbf{B}\mathbf{W}^{-1/2}\mathbf{W}^{1/2}\mathbf{v} = \lambda\mathbf{W}^{1/2}\mathbf{v}.$$

Therefore the two matrices have the same eigenvalues. Moreover suppose that \mathbf{v} is the eigenvector of $\mathbf{W}^{-1}\mathbf{B}$ corresponding to λ_{\max} . Then we have:

$$\frac{\mathbf{v}^T \mathbf{B} \mathbf{v}}{\mathbf{v}^T \mathbf{W} \mathbf{v}} = \frac{\mathbf{v}^T \mathbf{B} \mathbf{v}}{\mathbf{v}^T \mathbf{W} (\frac{1}{\lambda_{\max}} \mathbf{W}^{-1} \mathbf{B} \mathbf{v})} = \lambda_{\max}.$$

The linear function $\mathbf{a}^T \mathbf{x}$ is called Fisher's linear discriminant function or the first canonical variate. The ratio is invariant with the respect to scaling of \mathbf{a} .

Application of the linear discriminant analysis is as follows.

- Given the training set $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^p$ with known groups, compute the optimum **a** from Theorem 5.1.
- For a new observation \mathbf{x} , compute $\mathbf{a}^T \mathbf{x}$.
- Allocate x to the group with closest value of $\mathbf{a}^T \overline{\mathbf{x}}_l = \overline{\mathbf{y}}_l$. Discriminant rule can be formulated as follows:

Discriminant Rule: Allocate **x** to the group l if $|\mathbf{a}^T \mathbf{x} - \mathbf{a}^T \overline{\mathbf{x}}_l| \le |\mathbf{a}^T \mathbf{x} - \mathbf{a}^T \overline{\mathbf{x}}_j|$ for all $j = 1, \ldots, g$.

Fisher's discriminant function is most important in the special case of g = 2, where there are two groups of size n_1 and n_2 with $n = n_1 + n_2$. In this case we have:

$$\begin{split} \mathbf{B} &= n_1 (\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}) (\overline{\mathbf{x}}_1 - \overline{\mathbf{x}})^T + n_2 (\overline{\mathbf{x}}_2 - \overline{\mathbf{x}}) (\overline{\mathbf{x}}_2 - \overline{\mathbf{x}})^T \\ &= n_1 (\overline{\mathbf{x}}_1 - \frac{n_1}{n} \overline{\mathbf{x}}_1 - \frac{n_2}{n} \overline{\mathbf{x}}_2) (\overline{\mathbf{x}}_1 - \frac{n_1}{n} \overline{\mathbf{x}}_1 - \frac{n_2}{n} \overline{\mathbf{x}}_2)^T + n_2 (\overline{\mathbf{x}}_2 - \frac{n_2}{n} \overline{\mathbf{x}}_2 - \frac{n_1}{n} \overline{\mathbf{x}}_1) (\overline{\mathbf{x}}_2 - \frac{n_2}{n} \overline{\mathbf{x}}_2 - \frac{n_1}{n} \overline{\mathbf{x}}_1) (\overline{\mathbf{x}}_2 - \frac{n_2}{n} \overline{\mathbf{x}}_2 - \frac{n_1}{n} \overline{\mathbf{x}}_1)^T \\ &= n_1 (\frac{n_2}{n} \overline{\mathbf{x}}_1 - \frac{n_2}{n} \overline{\mathbf{x}}_2) (\frac{n_2}{n} \overline{\mathbf{x}}_1 - \frac{n_2}{n} \overline{\mathbf{x}}_2)^T + n_2 (\frac{n_1}{n} \overline{\mathbf{x}}_2 - \frac{n_1}{n} \overline{\mathbf{x}}_1) (\frac{n_1}{n} \overline{\mathbf{x}}_2 - \frac{n_1}{n} \overline{\mathbf{x}}_1)^T \\ &= \frac{n_1 n_2^2}{n^2} (\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2) (\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2)^T + \frac{n_2 n_1^2}{n^2} (\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2) (\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2)^T \\ &= \frac{n_1 n_2}{n} (\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2) (\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2)^T = \frac{n_1 n_2}{n} \mathbf{d} \mathbf{d}^T, \end{split}$$

39

5 Classification and Clustering

where $\mathbf{d} = \overline{\mathbf{x}_1} - \overline{\mathbf{x}}_2$. Therefore **B** has rank one and only one eigenvalue that is not equal to 0. Therefore $\mathbf{W}^{-1}\mathbf{B}$ has only one non-zero eigenvalue, which is given by:

$$\operatorname{tr}(\mathbf{W}^{-1}\mathbf{B}) = \frac{n_1 n_2}{n} \mathbf{d}^T \mathbf{W}^{-1} \mathbf{d}.$$

Since \mathbf{W} is nonnegative definite, the above value is nonnegative and therefore is the maximum eigenvalue. Note that \mathbf{d} is an eigenvector of \mathbf{B} . We have:

$$(\mathbf{W}^{-1}\mathbf{B})\mathbf{W}^{-1}\mathbf{d} = \mathbf{W}^{-1}\left(\frac{n_{1}n_{2}}{n}\mathbf{d}\mathbf{d}^{T}\right)\mathbf{W}^{-1}\mathbf{d}$$
$$= \frac{n_{1}n_{2}}{n}\mathbf{W}^{-1}\mathbf{d}\left(\mathbf{d}^{T}\mathbf{W}^{-1}\mathbf{d}\right)$$
$$= \left(\frac{n_{1}n_{2}}{n}\mathbf{d}^{T}\mathbf{W}^{-1}\mathbf{d}\right)\mathbf{W}^{-1}\mathbf{d}$$

Therefore $\mathbf{W}^{-1}\mathbf{d}$ is an eigenvector of $\mathbf{W}^{-1}\mathbf{B}$ corresponding to the eigenvalue $\frac{n_1n_2}{n}\mathbf{d}^T\mathbf{W}^{-1}\mathbf{d}$. Discriminant rule becomes:

• Allocate **x** to C_1 if $\mathbf{d}^T \mathbf{W}^{-1}(\mathbf{x} - \frac{1}{2}(\overline{\mathbf{x}}_1 + \overline{\mathbf{x}}_2)) > 0$.

 $\mathbf{a} = \mathbf{W}^{-1}\mathbf{d}$ is normal to the discriminating hyperplane between the classes.

Fischer's approach is distribution free. It is based on the general principle that the between-groups sum of squares is large relative to the within-groups sum of squares. This is measured by the quotient of these two quantities.

5.1.2 Gaussian ML Discriminant Rule

Maximum likelihood rule allocates observation \mathbf{x} to the class C_l which maximizes the likelihood $L_l(\mathbf{x}) = \max_j L_j(\mathbf{x})$. Assume that the class distributions are Gaussian and known as $N_p(\boldsymbol{\mu}_l, \boldsymbol{\Sigma}_l)$ with $\boldsymbol{\mu}_l$ and $\boldsymbol{\Sigma}_l$ fixed and with densities:

$$f_l(\mathbf{u}) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}_l|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{u} - \boldsymbol{\mu}_l)^T \mathbf{\Sigma}_l^{-1} (\mathbf{u} - \boldsymbol{\mu}_l)\right\}, \mathbf{u} \in \mathbb{R}^p.$$

The objective of ML discriminant rule would be to maximize $f_l(x)$ over l given **x**.

Theorem 5.2. The ML discriminant allocates \mathbf{x} to class C_l which maximizes $f_l(\mathbf{x})$ over $l = 1, \ldots, g$.

(a) If $\Sigma_l = \Sigma$ for all l, then the ML rule allocates \mathbf{x} to C_l which minimizes the Mahalanobis distance:

$$(\mathbf{x} - \boldsymbol{\mu}_l)^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_l).$$

(b) If g = 2, and $\Sigma_1 = \Sigma_2 = \Sigma$, then the ML rule allocates **x** to the class C_1 if

$$\mathbf{x}^T(\mathbf{x} - \boldsymbol{\mu}) > 0,$$

where $\boldsymbol{\alpha} = \boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)$ and $\boldsymbol{\mu} = \frac{1}{2}(\boldsymbol{\mu}_1 + \boldsymbol{\mu}_2)$.

Proof. Part (a) follows directly from the definition of ML discriminant rule. The ML discriminant finds the class l such that:

$$l = \arg \max_{1 \le j \le g} f_j(\mathbf{x}).$$

Since Σ is fixed for all classes, the maximization of $f_l(\mathbf{x})$ amounts to maximization of exponent which is minimization of the Mahalanobis distance. Part (b) is an exercise. \Box

Note that the rule (b) is analogue to Fisher's discriminant rule with parameters μ_1 , μ_2 and Σ substituting estimates $\overline{\mathbf{x}}_1$, $\overline{\mathbf{x}}_2$ and \mathbf{W} .

Application in practice: Σ_l and μ_l are mostly not known. One can estimate these parameters from a training set with known allocations as $\hat{\Sigma}_1$ and $\hat{\mu}_l$ for $l = 1, \ldots, g$. Substitute Σ_l and μ_l by their ML estimates $\hat{\Sigma}_1$ and $\hat{\mu}_l$ and compute the ML discriminant rule.