
4 Dimensionality Reduction
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Figure 4.1: Scree Plot

4.1.3 How to carry out PCA

Given x1, . . . ,xnRp, fix k � p.

• Compute Sn = 1
n−1

�n
i=1(xi − x)(xi − x)T . Find its spectral decomposition as

Sn = VΛVT whereΛ = diag(λ1, . . . ,λp) with λ1 ≥ · · · ≥ λp andV = (v1, . . . ,vp) ∈
O(p).

• v1, . . . ,vk are called the k Principal eigenvectors to the principal eigenvalues λ1 ≥
· · · ≥ λk.

• Projected points are found by:

x̂i =



vT
1
...
vT
k


xi, i = 1, . . . , n

Let us discuss computational complexity of PCA. Using the conventional method,
discussed above, the complexity of constructing Sn is O(np2) 1 and the complexity of
spectral decomposition is O(p3) [Ban08]. Therefore the computational complexity of
both steps together are O(max{np2, p3}).

However this can be improved. Assume p < n. Write:

X = [x1, . . . ,xn] and Sn =
1

n− 1
(X− x1Tn )(X− x1Tn )

T .

1 This is called Big-O notation or Bachmann-Landau notation. A function f(n) is O(g(n)) if for some
n0 > 0 and a constant c > 0, |f(n)| ≤ c|g(n)| for n ≥ n0. For example, if an algorithm over n objects
takes at most n2 + n time to run, then its complexity is O(n2).
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4.1 Principal Component Analysis (PCA)
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Figure 4.2: Eigenvalues of Sn and its scree plot

Consider singular value decomposition (SVD) of X − x1Tn = Up×pDVT
p×n where U ∈

O(p), VTV = Ip, D = diag(σ1, . . . ,σp). Using this decomposition, we have:

Sn =
1

n− 1
UDVTVDUT =

1

n− 1
UD2UT .

Hence U = [u1, . . . ,up] contains the eigenvectors of Sn. Computational complexity of
finding SVD for X−x1Tn is given by O(min{n2p, p2n}). However if one is only interested
in top k eigenvectors, the cost reduces to O(dnp).

Another issue is about the choice of k. If the goal of PCA is data visualization, then
k = 2 or k = 3 are reasonable choices. But PCA is also used for dimensionality reduction.
In application, it can happen that the data lies in a low dimensional subspace but it
is corrupted by a high dimensional noise. Also, it is possible that some algorithms are
computationally expensive to run on high dimensions and it makes sense to bring the
data to lower dimensions and run the algorithm more efficiently on lower dimensional
space.

To choose proper k, one heuristic is to look at the scree plot or scree graph. The scree
plot is the plot of ordered eigenvalues of Sn.

The scree graph was introduced by Raymond B. Cattell [Cat66]. It is a very subjective
way of determining k. The idea is to find k from the plot such that the line through
the points to the left of k is steep and the line through the points to the right of k
is not steep. This looks like an elbow in the scree plot. In Figure 4.1, a scree plot is

23
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Figure 4.3: Eigenvalues of Sn for Spike model with β = 1.5, 0.5

shown. The value of k can be chosen by recognizing an elbow in the graph of ordered
eigenvalues.

4.1.4 Eigenvalue structure of Sn in high dimensions

Suppose that x1, . . . ,xn ∈ Rp independent samples of a Gaussian random variable X ∼
Np(0,Σ). Let X = [x1, . . . ,xn]. Estimate Σ by Sn = 1

n

�n
i=1 xix

T
i = 1

nXXT .

If p is fixed, from law of large numbers, Sn will tend toΣ as n → ∞ almost everywhere.
However if both n and p are large, then it is not clear anymore what the relation between
Sn and Σ is. To see this, consider the case where Σ = I [Ban08]. Figure 4.2 shows the
scree plot and histogram of the eigenvalues for n = 1000 and p = 500. The plot shows
that there are many eigenvalues bigger than 1 unlike Σ = I which has all eigenvalues
equal to one. Scree plot also implies that data lies on a low dimensional space which is
also not true.

Following theorem is about distribution of eigenvalues of Sn when p and n are com-
parable.

Theorem 4.1 (Marchenko-Pastur, 1967). Let X1, . . . ,Xn be i.i.d. random vectors on
Rp with E(Xi) = 0 and Cov(Xi) = σ2Ip. Let X = (X1, . . . ,Xn) ∈ Rp×n and Sn =
1
nXXT ∈ Rp×p. Let λ1, . . . ,λp be the eigenvalues of Sn. Suppose that p, n → ∞ such

24



4.1 Principal Component Analysis (PCA)

that p
n → γ ∈ (0, 1] as n → ∞. Then the sample distribution of λ1, . . . ,λp converges

almost surely to the following density:

fγ(u) =
1

2πσ2uγ

�
(b− u)(u− a), a ≤ u ≤ b

with a(γ) = σ2(1−√
γ)2 and b(γ) = σ2(1 +

√
γ)2.

Proof. Refer to [Bai99] for various proofs.

Marchenko-Pastur distribution is presented in Figure 4.2 by the blue curve.

Remark 1. If γ > 1, there will be a mass point at zero with probability 1 − 1
γ . Since

γ > 1, then n < p. Moreover the rank of Sn = 1
nXXT will be at most min(p, n) which

is n < p in this case. This means that Sn is not full rank and zero is definitely one of
the eigenvalues.

The theorem shows that there is a wide spread of spectrum of eigenvalues even in the
case i.i.d. distributed random variables. The main question is to what degree PCA can
recover low dimensional structure from the data. Is PCA useful at all?

4.1.5 Spike Models

Suppose that there is a low dimensional structure in data. Let us say that each sample
results from a point on a one dimensional space with an additional high dimensional
noise perturbation. The one dimensional part is modeled by

√
βGv where v is a unit

norm vector in Rp, β is a non-negative constant and G is the standard normal random
variable. The high dimensional noise is modeled by U ∼ Np(0, Ip). Therefore the
samples are Xi = Ui+

√
βGiv with E(Xi) = 0. Since Gi and Ui are independent, using

Theorem 3.3, we have:

Cov(Xi) = Cov(Ui) + Cov(
�

βGiv) = Ip + vCov(
�
βGi)v

T = Ip + βvvT .

Suppose that X1, . . . ,Xn are i.i.d. distributed with Cov(Xi) = Ip + βvvT . Let us
look at distribution of eigenvalues for some numerical examples. Figure 4.3 shows the
distribution of eigenvalues for β = 1.5 and β = 0.5 and p = 500 and n = 1000, and
v = e1. It can be seen that all eigenvalues appear inside the interval proposed by
Marchenko-Pastur distribution when β = 0.5. However, the situation is different when
β = 1.5. One eigenvalue pops out of the interval in this case. Note that in general the
maximum eigenvalue of Ip + βe1e

T
1 is 1+1.5 which is 2.5, and all other eigenvalues are

1.
The question is whether there is a threshold for β above which we will see one eigen-

value popping out. The following theorem provides the transition point known as BPP
(Baik, Ben Arous and Péché) transition.

Theorem 4.2 ([BAP05]). Let X1, . . . ,Xn be i.i.d. random vectors on Rp with E(Xi) = 0
and Cov(Xi) = Ip + βvvT , β ≥ 0, v ∈ Rp, �v� = 1. Let X = (X1, . . . ,Xn) ∈ Rp×n and
Sn = 1

nXXT ∈ Rp×p. Suppose that p, n → ∞ such that p
n → γ ∈ (0, 1] as n → ∞.
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4 Dimensionality Reduction

• If β ≤ √
γ then λmax(Sn) → (1 +

√
γ)2 and |�vmax,v�| → 0.

• If β >
√
γ then λmax(Sn) → (1+ β)(1+ γ

β ) > (1+
√
γ)2 and |�vmax,v�| → 1−γ/β2

1−γ/β .

The interpretation of this theorem is that, only if β >
√
γ, the largest eigenvalue

exceeds the upper asymptotic bound of the asymptotic support and the corresponding
eigenvector has a non-trivial correlation with the eigenvector v.
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