
Fundamentals of Big Data Analytics

We introduce the following theorem which will be used later.

Theorem 1 (Courant-Fischer min-max theorem [HJ10, Theorem 4.2.11]). Let A be a n× n
symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Then we have

max
S:dim(S)=k

min
x∈S;‖x‖2=1

xT Ax = λk (1)

min
S:dim(S)=n−k+1

max
x∈S;‖x‖2=1

xT Ax = λk (2)

for all k ∈ [n] and S ranges over all subspaces of Rn.

Example 2. For the case k = 1, the theorem boils down to the following:

max
x∈Rn;‖x‖2=1

xT Ax = λ1.

1 Matrix Norms

We work with the vector spaces Rn and Cn where R and C are set of real and complex
numbers.

Definition 3. For a vector space V , a norm is defined as a function ‖.‖ : V → R, satisfying
following properties for x ∈ V :

• Non-negativity: ‖x‖ ≥ 0

• Positive: ‖x‖ = 0 if and only if x = 0

• Homogeneous: ‖cx‖ = |c| ‖x‖ for c ∈ F

• Triangle inequality: ‖x + y‖ ≤ ‖x‖+ ‖y‖

Example 4. For p ≥ 1, `p norm of a vector x ∈ Rn is defined as:

‖x‖p = (
n∑

i=1
|xi|p)1/p.

Following are some examples:

• `1-norm: ‖x‖1 = ∑n
i=1 |xi|

• `2-norm: ‖x‖p =
√

(∑n
i=1 |xi|2)

• `∞-norm: ‖x‖∞ = max
i∈{1,...,n}

|xi|
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Figure 1: `p unit balls for `p = `1, `2, `3, `∞

Figure 1 shows the `p unit balls for `p = `1, `2, `3, `∞, centered at origin, which is defined as:

Bp = {x ∈ Rn : ‖x‖p ≤ 1}.

Note that since `p norm satisfies triangle inequality, the `p unit ball is convex. The unit ball
expands with p from a rotated square for `1 norm to a square for `∞ norm.

The definition is valid for a general vector space over a field F. Since the space of all n× n
matrices, denoted byMn, is also a vector space, we can similarly talk about matrix norms.
Sometimes matrix norms are called to those norms satisfying so called submultiplicative
property (for instance [HJ10]):

‖XY‖ ≤ ‖X‖ ‖Y‖ .

Let’s continue by some common examples of matrix norms. Some common examples are `1
norm or `∞ (max) norm. `1 norm of a matrix A is given by:

‖A‖1 =
∑

i,j∈[n]
|aij|.

Similarly, `∞ norm of a matrix A is given by:

‖A‖∞ = max
i,j∈[n]

|aij|.

Note that `∞ norm is not submultiplicative.

1.1 Operator Norm

A normed vector space can induce a norm on the space of linear transformations:

‖A‖ = max
‖x‖=1

‖Ax‖ .

The norm is called the operator norm of the matrix. From this definition, it can be seen that:

‖Ax‖ ≤ ‖A‖ ‖x‖ . (3)



Given each vector norm, a norm can be induced on Mn. For instance `p norm for p ≥ 1
induces a norm onMn. In general we define the following1:

‖A‖p→q = max
‖x‖p=1

‖Ax‖q .

Spectral radius of a matrix is defined as follows.

Definition 5 (Spectral radius). The specral radius ρ(A) of a matrix A ∈Mn is defined as:

ρ(A) = max{|λ| : λ is an eigenvalue of A}.

The operators norms, and in general submultiplicative matrix norms, of a matrix are all
bounded from below by its spectral radius.

Theorem 6. The (submultiplicative) matrix norm ‖·‖ of an arbitrary matrix A is lower
bounded by its spectral radius:

‖A‖ ≥ ρ(A).

Proof. Suppose that ρ(A) = |λk| and x is a non-zero eigenvector corresponding to λ1. For a
general submultiplicative norm, define V = [x, . . . ,x] ∈ Rn×n. Then from submultiplicative
property we have:

‖AV‖ ≤ ‖A‖ ‖V‖ .

Moreover AV = [Ax, . . . ,Ax] = λkV and ‖λkV‖ = |λk| ‖V‖. Therefore ‖A‖ ≥ |λk| =
ρ(A).

The proof for operator norms, easily follows from:

|λk| ‖x‖ = ‖λkx‖ = ‖Ax‖ ≤ ‖A‖ ‖x‖ .

where the last inequality is the result of (3). Therefore ‖A‖ ≥ ρ(A).

Example 7. Consider the case where p = q = 1:

‖A‖1→1 = max
‖x‖1=1

‖Ax‖1 .

For all x ∈ Rn with ‖x‖1 = 1, we have:

‖Ax‖1 =
∑

i

∣∣∣∣∣∣
∑

j

aijxj

∣∣∣∣∣∣ ≤
∑

i

∑
j

|xj| |aij|

=
∑

j

|xj|
∑

i

|aij| ≤ max
j

∑
i

|aij| = max
j
‖cj‖1

where cj is the column j of the matrix. Therefore maxj ‖cj‖1 is an upper bound for this norm.
It is achievable by choosing the canonical basis ej∗ such that cj∗ = maxj ‖cj‖1. Hence:

‖A‖1→1 = max
j
‖cj‖1 .

1The notation is chosen as such to avoid confusion with entrywise norms.



Example 8. Let’s consider the norm on linear transformations induced by `∞ norm:

‖A‖∞→∞ = max
‖x‖∞=1

‖Ax‖∞ .

For all x ∈ Rn with ‖x‖∞ = 1, we have:

‖Ax‖∞ = max
i

∣∣∣∣∣∣
∑

j

aijxj

∣∣∣∣∣∣ ≤ max
i

∑
j

|xj| |aij|

= max
i

∑
j

|aij| = max
i
‖ri‖1

where ri is the row i of the matrix. This upper bound is achievable by choosing vector of
ones 1n×1. Hence:

‖A‖∞→∞ = max
i
‖ri‖1 .

Example 9. (spectral norm) Particular case of `2 norm is called spectral norm. Sometimes
the spectral norm is directly defined as :

‖A‖2→2 = max{
√
λ : λ is an eigenvalue of AT A}.

Note that AT A is positive semidefinite and all its eigenvalues are nonnegative. Normal
matrices could be diagonalized and they are the most general class of matrices that can be
orthogonally diagonalized. In this case we have A = UT ΛU. If ‖x‖2 = 1, we have:

‖Ax‖2 =
∥∥∥UT ΛUx

∥∥∥
2
≤ ‖Λ‖2 ‖x‖2

= max{|λ| : λ is an eigenvalue of A}.

This implies that the spectral norm of normal matrices are equal to the maximum eigenvalue
in absolute value which is the spectral radius ρ(A):

ρ(A) = ‖A‖2→2 .

In general this is not true and the spectral radius may even not be a norm (see Exercise 1).
Take the following matrix as example.

A =

4 2 1
2 5 1
1 8 8


See that ‖Ax‖2→2 ≈ 12 and ρ(A) ≈ 10.

Finally, note that a real matrix A having positive eigenvalues does not imply xT Ax > 0 for

all x ∈ Rn. Consider A =
[

0.1 1
0 0.1

]
. The eigenvalues are both 0.1 and positive, however

choosing x = [−1, 1]T gives xT Ax = −0.8 < 0. Being symmetric is essential in the definition
of positive definite and similarly nonnegative definite matrices.
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