

Prof. Dr. Rudolf Mathar, Dr. Gholamreza Alirezaei, Dr. Arash Behboodi

Exercise 1 Friday, November 4, 2016

Problem 1. (Properties of Positive Definite and Non-negative Definite Matrices) Let $\mathbf{M} \in \mathbb{R}^{n \times n}$ be a matrix. Prove the following statements.

- a) If M is non-negative definite, then for every vector $\mathbf{x} \in \mathbb{R}^n$ it holds that $\mathbf{x}^T \mathbf{M} \mathbf{x} \ge 0$.
- **b)** If **M** is positive definite, then for every vector $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} \neq 0$, it holds that $\mathbf{x}^T \mathbf{M} \mathbf{x} > 0$.

Problem 2. (Matrix Loewner Ordering Properties) Let V and W be two $n \times n$ non-negative definite matrices, such that $\mathbf{V} = (v_{ij}) \preceq \mathbf{W} = (w_{ij})$, with the eignevalues as:

- $\lambda_1(\mathbf{V}) \geq \cdots \geq \lambda_n(\mathbf{V}),$
- $\lambda_1(\mathbf{W}) \geq \cdots \geq \lambda_n(\mathbf{W})$

Prove the following statements.

- a) $\lambda_i(\mathbf{V}) \leq \lambda_i(\mathbf{W})$, for $i = 1, \dots, n$
- **b)** $v_{ii} \le w_{ii}$, for i = 1, ..., n
- c) $v_{ii} + v_{jj} 2v_{ij} \le w_{ii} + w_{jj} 2w_{ij}$
- d) $tr(V) \le tr(W)$
- e) $det(\mathbf{V}) \le det(\mathbf{W})$

Problem 3. (Properties of Spectral Norm) Spectral norm of a symmetric matrix **M** is given by $\rho(\mathbf{M}) = \max_{1 \le i \le n} |\lambda_m|$.

- a) Show that $\rho(\mathbf{M})$ is not a norm for non-symmetric matrices. (Hint: show that $\rho(\mathbf{A}) = 0$ does not imply $\mathbf{A} = 0$)
- **b)** For a general matrix **M**, not necessarily symmetric, show that $\|\mathbf{M}\|_F \ge \rho(\mathbf{M})$ where $\|.\|_F$ is the Frobenius norm.