Prof. Dr. Rudolf Mathar, Dr. Gholamreza Alirezaei, Dr. Arash Behboodi

Exercise 1

Friday, November 4, 2016

Problem 1. (Properties of Positive Definite and Non-negative Definite Matrices) Let M \in $\mathbb{R}^{n \times n}$ be a matrix. Prove the following statements.
a) If \mathbf{M} is non-negative definite, then for every vector $\mathbf{x} \in \mathbb{R}^{n}$ it holds that $\mathbf{x}^{T} \mathbf{M} \mathbf{x} \geq 0$.
b) If \mathbf{M} is positive definite, then for every vector $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} \neq 0$, it holds that $\mathbf{x}^{T} \mathbf{M} \mathbf{x}>0$.

Problem 2. (Matrix Loewner Ordering Properties) Let \mathbf{V} and \mathbf{W} be two $n \times n$ non-negative definite matrices, such that $\mathbf{V}=\left(v_{i j}\right) \preceq \mathbf{W}=\left(w_{i j}\right)$, with the eignevalues as:

- $\lambda_{1}(\mathbf{V}) \geq \cdots \geq \lambda_{n}(\mathbf{V})$,
- $\lambda_{1}(\mathbf{W}) \geq \cdots \geq \lambda_{n}(\mathbf{W})$

Prove the following statements.
a) $\lambda_{i}(\mathbf{V}) \leq \lambda_{i}(\mathbf{W})$, for $i=1, \ldots, n$
b) $v_{i i} \leq w_{i i}$, for $i=1, \ldots, n$
c) $v_{i i}+v_{j j}-2 v_{i j} \leq w_{i i}+w_{j j}-2 w_{i j}$
d) $\operatorname{tr}(\mathbf{V}) \leq \operatorname{tr}(\mathbf{W})$
e) $\operatorname{det}(\mathbf{V}) \leq \operatorname{det}(\mathbf{W})$

Problem 3. (Properties of Spectral Norm) Spectral norm of a symmetric matrix \mathbf{M} is given by $\rho(\mathbf{M})=\max _{1 \leq i \leq n}\left|\lambda_{m}\right|$.
a) Show that $\rho(\mathbf{M})$ is not a norm for non-symmetric matrices.
(Hint: show that $\rho(\mathbf{A})=0$ does not imply $\mathbf{A}=0$)
b) For a general matrix \mathbf{M}, not necessarily symmetric, show that $\|\mathbf{M}\|_{F} \geq \rho(\mathbf{M})$ where $\|\cdot\|_{F}$ is the Frobenius norm.

