

Prof. Dr. Rudolf Mathar, Dr. Gholamreza Alirezaei, Dr. Arash Behboodi

Exercise 2 Friday, November 11, 2016

Problem 1. (Properties of expectation and covariance) Two independent random vectors $\mathbf{X} = (X_1, X_2, \ldots, X_n)^{\mathrm{T}}$ and $\mathbf{Y} = (Y_1, Y_2, \ldots, Y_n)^{\mathrm{T}}$ with $n \in \mathbb{N}$ are given. Furthermore, c_X , c_Y , \mathbf{A} and \mathbf{b} are fixed quantities of adequate dimensions. Prove the following identities:

- a) (Scale and shift properties) E(AX + b) = A E(X) + b,
- **b)** (linearity) $E(c_X X + c_Y Y) = c_X E(X) + c_Y E(Y)$,
- c) (independency) E(XY) = E(X)E(Y),
- d) $\operatorname{Cov}(\boldsymbol{A}\boldsymbol{X} + \boldsymbol{b}) = \boldsymbol{A}\operatorname{Cov}(\boldsymbol{X})\boldsymbol{A}^{\mathrm{H}},$
- e) $\operatorname{Cov}(c_X X + c_Y Y) = |c_X|^2 \operatorname{Cov}(X) + |c_Y|^2 \operatorname{Cov}(Y).$

Problem 2. (Mean and covariance of normal distribution) Let $\mathbf{X} \sim \mathcal{N}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $n \in \mathbb{N}$ be given. Show the identities $\mathbf{E}(\mathbf{X}) = \boldsymbol{\mu}$ and $\operatorname{Cov}(\mathbf{X}) = \boldsymbol{\Sigma}$.

Problem 3. (*Higher moments*) Let $\mathbf{X} \sim \mathcal{N}_n(\mathbf{0}, \mathbf{\Sigma})$ with $n \in \mathbb{N}$ be given. Use the Isserlis' Theorem to calculate the higher moments $\mathrm{E}(X_1X_2X_3X_4X_5)$, $\mathrm{E}(X_1X_2X_3X_4)$ and $\mathrm{E}(X_1^2X_5^4)$.

Isserlis' Theorem: If $\mathbf{X} = (X_1, X_2, \dots, X_n)$ is a zero mean multivariate normal random vector with covariance $\mathbf{\Sigma}$, then

$$\mathbf{E}(X_1 X_2 \cdots X_m) = \begin{cases} 0, & \text{if } m \le n \text{ is odd,} \\ \\ \sum_{\substack{\pi \\ i \ne j}} \prod_{\substack{i,j \\ i \ne j}} \mathbf{E}(X_i X_j), & \text{if } m \le n \text{ is even.} \end{cases}$$

The sum is performed over all permutations π for partitioning the sequence X_1, X_2, \ldots, X_m in pairs of two random variables.