Prof. Dr. Rudolf Mathar, Dr. Gholamreza Alirezaei, Dr. Arash Behboodi

Exercise 2

Friday, November 11, 2016

Problem 1. (Properties of expectation and covariance) Two independent random vectors $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{\mathrm{T}}$ and $\boldsymbol{Y}=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{\mathrm{T}}$ with $n \in \mathbb{N}$ are given. Furthermore, c_{X}, c_{Y}, \boldsymbol{A} and \boldsymbol{b} are fixed quantities of adequate dimensions. Prove the following identities:
a) (Scale and shift properties) $\mathrm{E}(\boldsymbol{A X}+\boldsymbol{b})=\boldsymbol{A} \mathrm{E}(\boldsymbol{X})+\boldsymbol{b}$,
b) (linearity) $\mathrm{E}\left(c_{X} \boldsymbol{X}+c_{Y} \boldsymbol{Y}\right)=c_{X} \mathrm{E}(\boldsymbol{X})+c_{Y} \mathrm{E}(\boldsymbol{Y})$,
c) (independency) $\mathrm{E}(\boldsymbol{X} \boldsymbol{Y})=\mathrm{E}(\boldsymbol{X}) \mathrm{E}(\boldsymbol{Y})$,
d) $\operatorname{Cov}(\boldsymbol{A} \boldsymbol{X}+\boldsymbol{b})=\boldsymbol{A} \operatorname{Cov}(\boldsymbol{X}) \boldsymbol{A}^{\mathrm{H}}$,
e) $\operatorname{Cov}\left(c_{X} \boldsymbol{X}+c_{Y} \boldsymbol{Y}\right)=\left|c_{X}\right|^{2} \operatorname{Cov}(\boldsymbol{X})+\left|c_{Y}\right|^{2} \operatorname{Cov}(\boldsymbol{Y})$.

Problem 2. (Mean and covariance of normal distribution) Let $\mathbf{X} \sim \mathcal{N}_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $n \in \mathbb{N}$ be given. Show the identities $\mathrm{E}(\mathbf{X})=\boldsymbol{\mu}$ and $\operatorname{Cov}(\mathbf{X})=\boldsymbol{\Sigma}$.

Problem 3. (Higher moments) Let $\boldsymbol{X} \sim \mathcal{N}_{n}(\mathbf{0}, \boldsymbol{\Sigma})$ with $n \in \mathbb{N}$ be given. Use the Isserlis' Theorem to calculate the higher moments $\mathrm{E}\left(X_{1} X_{2} X_{3} X_{4} X_{5}\right), \mathrm{E}\left(X_{1} X_{2} X_{3} X_{4}\right)$ and $\mathrm{E}\left(X_{1}^{2} X_{5}^{4}\right)$.

Isserlis' Theorem: If $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is a zero mean multivariate normal random vector with covariance $\boldsymbol{\Sigma}$, then

$$
\mathrm{E}\left(X_{1} X_{2} \cdots X_{m}\right)= \begin{cases}0, & \text { if } m \leq n \text { is odd } \\
\sum_{\substack { \pi \\
\begin{subarray}{c}{i, j \\
i \neq j{ \pi \\
\begin{subarray} { c } { i , j \\
i \neq j } }\end{subarray}} \mathrm{E}\left(X_{i} X_{j}\right), & \text { if } m \leq n \text { is even. }\end{cases}
$$

The sum is performed over all permutations $\boldsymbol{\pi}$ for partitioning the sequence $X_{1}, X_{2}, \ldots, X_{m}$ in pairs of two random variables.

