Prof. Dr. Rudolf Mathar, Dr. Gholamreza Alirezaei, Dr. Arash Behboodi

Exercise 3

Friday, November 18, 2016

Problem 1. (Matrix Derivative) Let \mathbf{A} and \mathbf{X} be $n \times n$ matrix and \mathbf{x}, \mathbf{y} be n-dimensional vectors. Prove the following statements:
a) $\frac{\partial \mathbf{y}^{T} \mathbf{x}}{\partial \mathbf{x}}=\mathbf{y}$
b) $\frac{\partial \mathbf{x}^{T} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}}=\left(\mathbf{A}+\mathbf{A}^{T}\right) \mathbf{x}$
c) $\frac{\partial}{\partial \mathbf{X}} \operatorname{tr}(\mathbf{X A})=\mathbf{A}^{T}$
d) $\frac{\partial}{\partial \mathbf{X}} \operatorname{tr}\left(\mathbf{X}^{T} \mathbf{A} \mathbf{X}\right)=\left(\mathbf{A}^{T}+\mathbf{A}\right) \mathbf{X}$
e) $\frac{\partial}{\partial \mathbf{X}}\|\mathbf{X}\|_{F}^{2}=2 \mathbf{X}$
f) $\frac{\partial}{\partial \mathbf{X}} \operatorname{det}(\mathbf{X})=\operatorname{det}(\mathbf{X})\left(\mathbf{X}^{-1}\right)^{T}$
g) $\frac{\partial}{\partial \mathbf{X}} \log |\operatorname{det}(\mathbf{X})|=\left(\mathbf{X}^{-1}\right)^{T}$

Problem 2. (Unbiased Covariance Estimator) If $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ are random i.i.d. draws from a multivariate distribution, prove that the sample mean $\overline{\mathbf{X}}$ and sample covariance matrix \mathbf{S}_{n} are unbiased estimators of expected value $\mathbb{E}(\mathbf{X})$ and covariance matrix $\boldsymbol{\Sigma}=\operatorname{Cov}(\mathbf{X})$ of the multivariate distribution. The sample mean and covariance are defined as follows:

$$
\overline{\mathbf{X}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}, \quad \mathbf{S}_{n}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)^{T} .
$$

Problem 3. ($P C A$ in 3-dimensional space) Consider four samples in \mathbb{R}^{3} given as follows:

$$
\mathbf{x}_{1}=\left[\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{c}
3 \\
-1 \\
-2
\end{array}\right] \mathbf{x}_{3}=\left[\begin{array}{c}
-4 \\
2 \\
2
\end{array}\right] \mathbf{x}_{4}=\left[\begin{array}{c}
-3 \\
-1 \\
4
\end{array}\right] .
$$

a) Find the sample mean and the sample covariance matrix.
b) Using PCA, find the best orthogonal projection matrix \mathbf{Q} for presenting the data in two dimensional space. Explain each step.
c) Show that the image of \mathbf{Q} is the plane $x+y+z=0$.

