Prof. Dr. Rudolf Mathar, Dr. Gholamreza Alirezaei, Dr. Arash Behboodi

Exercise 4

Friday, November 25, 2016

Problem 1. (Distribution of eigenvalues) Use Gerschgorin's Theorem to find the smallest regions in which the eigenvalues of the matrix \boldsymbol{A} are concentrated. Is \boldsymbol{A} positive definite? Determine the smallest interval $\left[\lambda_{\min }, \lambda_{\max }\right]$ in which the real part of the eigenvalues are distributed.

$$
\boldsymbol{A}=\left(\begin{array}{ccccc}
10 & 0.1 & 1 & 0.9 & 0 \\
0.2 & 9 & 0.2 & 0.2 & 0.2 \\
0.3 & -0.1 & 5+i & 0 & 0.1 \\
0 & 0.6 & 0.1 & 6 & -0.3 \\
0.3 & -0.3 & 0.1 & 0 & 1
\end{array}\right)
$$

Gerschgorin's Theorem: Let $\boldsymbol{A} \in \mathbb{C}^{n \times n}$, with entries $a_{i j}$, be given. For $i, j \in\{1, \ldots, n\}$ let $R_{i}=\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right|$ and $C_{j}=\sum_{\substack{i=1 \\ i \neq j}}^{n}\left|a_{i j}\right|$ be the sum of the absolute values of the non-diagonal entries. Then every eigenvalue of \boldsymbol{A} lies within at least one of the discs centered at $a_{i i}$ with radius $\min \left\{R_{i}, C_{i}\right\}$.

Note that if one of the discs is disjoint from the others then it contains exactly one eigenvalue. If the union of m discs is disjoint from the union of the other $n-m$ discs then the former union contains exactly m and the latter $n-m$ eigenvalues of \boldsymbol{A}.

Problem 2. (Distribution of eigenvalues) Use Schur's inequality to find the region in which all eigenvalues of the matrix \boldsymbol{A} are concentrated. Compare the obtained region with the solution by Gerschgorin.

$$
\boldsymbol{A}=\left(\begin{array}{ccccc}
10 & 0.1 & 1 & 0.9 & 0 \\
0.2 & 9 & 0.2 & 0.2 & 0.2 \\
0.3 & -0.1 & 5+i & 0 & 0.1 \\
0 & 0.6 & 0.1 & 6 & -0.3 \\
0.3 & -0.3 & 0.1 & 0 & 1
\end{array}\right)
$$

Schur's Inequality: Let $\boldsymbol{A} \in \mathbb{C}^{n \times n}$, with entries $a_{i j}$ and eigenvalues λ_{i}, be given. Then the inequality $\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} \leq \sum_{i=1}^{n} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}=\|\boldsymbol{A}\|_{2}^{2}$ holds. Equality is attained if \boldsymbol{A} is normal.

Problem 3. Prove the inequality $(1+\beta)\left(1+\frac{\gamma}{\beta}\right) \geq(1+\sqrt{\gamma})^{2}$.
Cauchy-Bunyakovsky-Schwarz Inequality: If $\boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ are two real vectors, then the inequality

$$
\left(\sum_{i=1}^{n} u_{i} v_{i}\right)^{2} \leq \sum_{i=1}^{n} u_{i}^{2} \sum_{j=1}^{n} v_{j}^{2} \quad \Leftrightarrow \quad\langle\boldsymbol{u}, \boldsymbol{v}\rangle \leq\langle\boldsymbol{u}, \boldsymbol{u}\rangle\langle\boldsymbol{v}, \boldsymbol{v}\rangle
$$

holds. Equality is attained whenever \boldsymbol{u} and \boldsymbol{v} are linearly dependent.

Problem 4. (Spike model) Fix $p=500$ as the dimension of the space \mathbb{R}^{p}. Suppose that the data is generated from two one dimensional subspaces modeled by $\sqrt{0.2} G_{1} \boldsymbol{v}_{1}$ and $\sqrt{0.5} G_{2} \boldsymbol{v}_{2}$, where \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are orthogonal unit norm vectors in \mathbb{R}^{p}, and G_{1} and G_{2} are independent standard normal random variables. The high dimensional noise $\boldsymbol{U} \in \mathbb{R}^{p}$ is independent of both G_{1} and G_{2} and is modeled as a standard normal random vector. The covariance matrix of this model $\boldsymbol{X}=\boldsymbol{U}+\sqrt{0.2} G_{1} \boldsymbol{v}_{1}+\sqrt{0.5} G_{2} \boldsymbol{v}_{2}$ is described by:

$$
\operatorname{Cov}(\boldsymbol{X})=\boldsymbol{I}_{p}+0.2 \boldsymbol{v}_{1} \boldsymbol{v}_{1}^{\mathrm{T}}+0.5 \boldsymbol{v}_{2} \boldsymbol{v}_{2}^{\mathrm{T}} .
$$

Suppose that $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$ are i.i.d. distributed with $\operatorname{Cov}\left(\boldsymbol{X}_{i}\right)=\operatorname{Cov}(\boldsymbol{X})$.
a) Find the minimum number n_{2} of samples such that only the dominant eigenvalue is visible. Calculate the distance $\left\langle\boldsymbol{v}_{2}, \boldsymbol{v}_{\text {dom }}\right\rangle$ for this case.
b) Find the minimum number n_{1} of samples such that both dominant eigenvalues are visible. Calculate the distance $\left\langle\boldsymbol{v}_{2}, \boldsymbol{v}_{\text {dom }}\right\rangle$ for this case. Sketch the Marchenko-Pastur density for the latter case along with both dominant eigenvalues of the sample covariance matrix \mathbf{S}_{n}.

