

Prof. Dr. Rudolf Mathar, Dr. Gholamreza Alirezaei, Dr. Arash Behboodi

Exercise 4 Friday, November 25, 2016

Problem 1. (Distribution of eigenvalues) Use Gerschgorin's Theorem to find the smallest regions in which the eigenvalues of the matrix \boldsymbol{A} are concentrated. Is \boldsymbol{A} positive definite? Determine the smallest interval $[\lambda_{\min}, \lambda_{\max}]$ in which the real part of the eigenvalues are distributed.

	(10	0.1	1	0.9	0
	0.2	9	0.2	0.2	0.2
A =	0.3	-0.1	5+i	0	0.1
	0	0.6	0.1	6	-0.3
	(0.3)	-0.3	0.1	0	1 /

Gerschgorin's Theorem: Let $A \in \mathbb{C}^{n \times n}$, with entries a_{ij} , be given. For $i, j \in \{1, \ldots, n\}$ let $R_i = \sum_{\substack{j=1 \ j \neq i}}^n |a_{ij}|$ and $C_j = \sum_{\substack{i=1 \ i \neq j}}^n |a_{ij}|$ be the sum of the absolute values of the non-diagonal entries. Then every eigenvalue of A lies within at least one of the discs centered at a_{ii} with radius min $\{R_i, C_i\}$.

Note that if one of the discs is disjoint from the others then it contains exactly one eigenvalue. If the union of m discs is disjoint from the union of the other n - m discs then the former union contains exactly m and the latter n - m eigenvalues of A.

Problem 2. (Distribution of eigenvalues) Use Schur's inequality to find the region in which all eigenvalues of the matrix A are concentrated. Compare the obtained region with the solution by Gerschgorin.

	(10	0.1	1	0.9	0)
	0.2	9	0.2	0.2	0.2
$oldsymbol{A}=$	0.3	-0.1	5+i	0	0.1
	0	0.6	0.1	6	-0.3
	$\left(0.3\right)$	-0.3	0.1	0	1 /

Schur's Inequality: Let $\mathbf{A} \in \mathbb{C}^{n \times n}$, with entries a_{ij} and eigenvalues λ_i , be given. Then the inequality $\sum_{i=1}^{n} |\lambda_i|^2 \leq \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^2 = \|\mathbf{A}\|_2^2$ holds. Equality is attained if \mathbf{A} is normal.

Problem 3. Prove the inequality $(1 + \beta)(1 + \frac{\gamma}{\beta}) \ge (1 + \sqrt{\gamma})^2$.

Cauchy-Bunyakovsky-Schwarz Inequality: If $u = (u_1, u_2, ..., u_n)$ and $v = (v_1, v_2, ..., v_n)$ are two real vectors, then the inequality

$$\left(\sum_{i=1}^n u_i v_i\right)^2 \le \sum_{i=1}^n u_i^2 \sum_{j=1}^n v_j^2 \qquad \Leftrightarrow \qquad \langle \boldsymbol{u}, \boldsymbol{v} \rangle \le \langle \boldsymbol{u}, \boldsymbol{u} \rangle \langle \boldsymbol{v}, \boldsymbol{v} \rangle$$

holds. Equality is attained whenever \boldsymbol{u} and \boldsymbol{v} are linearly dependent.

Problem 4. (Spike model) Fix p = 500 as the dimension of the space \mathbb{R}^p . Suppose that the data is generated from two one dimensional subspaces modeled by $\sqrt{0.2}G_1\boldsymbol{v}_1$ and $\sqrt{0.5}G_2\boldsymbol{v}_2$, where \boldsymbol{v}_1 and \boldsymbol{v}_2 are orthogonal unit norm vectors in \mathbb{R}^p , and G_1 and G_2 are independent standard normal random variables. The high dimensional noise $\boldsymbol{U} \in \mathbb{R}^p$ is independent of both G_1 and G_2 and is modeled as a standard normal random vector. The covariance matrix of this model $\boldsymbol{X} = \boldsymbol{U} + \sqrt{0.2}G_1\boldsymbol{v}_1 + \sqrt{0.5}G_2\boldsymbol{v}_2$ is described by:

$$\operatorname{Cov}(\boldsymbol{X}) = \boldsymbol{I}_p + 0.2\boldsymbol{v}_1\boldsymbol{v}_1^{\mathrm{T}} + 0.5\boldsymbol{v}_2\boldsymbol{v}_2^{\mathrm{T}}.$$

Suppose that X_1, \ldots, X_n are i.i.d. distributed with $Cov(X_i) = Cov(X)$.

- a) Find the minimum number n_2 of samples such that only the dominant eigenvalue is visible. Calculate the distance $\langle \boldsymbol{v}_2, \boldsymbol{v}_{\text{dom}} \rangle$ for this case.
- b) Find the minimum number n_1 of samples such that both dominant eigenvalues are visible. Calculate the distance $\langle \boldsymbol{v}_2, \boldsymbol{v}_{\text{dom}} \rangle$ for this case. Sketch the Marchenko-Pastur density for the latter case along with both dominant eigenvalues of the sample covariance matrix \mathbf{S}_n .