Prof. Dr. Rudolf Mathar, Dr. Gholamreza Alirezaei, Dr. Arash Behboodi

Exercise 5

Friday, December 2, 2016

Problem 1. (Characterization of Euclidean Distance Matrices)
a) Show that if $\mathbf{D}(\mathbf{X}) \in \mathbb{R}^{n \times n}$ is a distance matrix, then show that:

$$
-\frac{1}{2} \mathbf{D}^{(2)}(\mathbf{X})=\mathbf{X} \mathbf{X}^{T}-\mathbf{1}_{n} \hat{\mathbf{x}}^{T}-\hat{\mathbf{x}} \mathbf{1}^{T}
$$

where $\hat{\mathbf{x}}=\frac{1}{2}\left[\mathbf{x}_{1}^{T} \mathbf{x}_{1}, \ldots, \mathbf{x}_{n}^{T} \mathbf{x}_{n}\right]^{T}$.
b) Consider $-\frac{1}{2} \mathbf{E}_{n} \boldsymbol{\Delta}^{(2)} \mathbf{E}_{n}$, which is non-negative definite and $\operatorname{rk}\left(-\frac{1}{2} \mathbf{E}_{n} \boldsymbol{\Delta}^{(2)} \mathbf{E}_{n}\right) \leq k$, then there exists $n \times k$ matrix \mathbf{X} such that

$$
-\frac{1}{2} \mathbf{E}_{n} \boldsymbol{\Delta}^{(2)} \mathbf{E}_{n}=\mathbf{X} \mathbf{X}^{T}, \text { and } \mathbf{X}^{T} \mathbf{E}_{n}=\mathbf{X}^{T}
$$

c) A matrix with zero diagonal elements is called hollow matrix. Prove that if \mathbf{A} is a symmetric hollow matrix, then $\mathbf{A}=0$ if and only if $\mathbf{E}_{n} \mathbf{A} \mathbf{E}_{n}=0$.

Problem 2. (MDS vs. PCA) Suppose that $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{p}$ and $\mathbf{X}=\left[\mathbf{x}_{1} \ldots \mathbf{x}_{n}\right] \in \mathbb{R}^{p \times n}$. Let \mathbf{E}_{n} be the centering matrix defined as $\mathbf{I}_{n}-\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{T}$.
a) Show that the sample covariance matrix \mathbf{S}_{n} is equal to $\frac{1}{n-1} \mathbf{X} \mathbf{E}_{n} \mathbf{X}^{T}$.
b) Show that if the projection matrix in PCA is \mathbf{Q} then the projected points are given by QXE $_{n}$.
c) Consider n points presented as $\mathbf{X}=\left[\mathbf{x}_{1} \ldots \mathbf{x}_{n}\right] \in \mathbb{R}^{p \times n}$. Show that the if PCA analysis is applied to have the best projection on a k-dimensional space, the output is given by:

$$
\left[\begin{array}{c}
\sqrt{\lambda_{1}} \mathbf{v}_{1}^{T} \\
\vdots \\
\sqrt{\lambda_{k}} \mathbf{v}_{k}^{T}
\end{array}\right]
$$

where $\mathbf{V}=\left[\mathbf{v}_{1} \ldots \mathbf{v}_{p}\right]$ comes from the singular value decomposition of $\mathbf{X E}_{n}$ which is :

$$
\mathbf{X} \mathbf{E}_{n}=\mathbf{U}_{p \times p} \boldsymbol{\Lambda} \mathbf{V}_{n \times p}^{T}
$$

d) Show that applying MDS on the distance matrix $\mathbf{D}(\mathbf{X})$ provides the same result as PCA.

Problem 3. (MDS in 3-dimensional space) Consider four samples in \mathbb{R}^{3} given as follows:

$$
\mathbf{x}_{1}=\left[\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{c}
3 \\
-1 \\
-2
\end{array}\right] \mathbf{x}_{3}=\left[\begin{array}{c}
-4 \\
2 \\
2
\end{array}\right] \mathbf{x}_{4}=\left[\begin{array}{c}
-3 \\
-1 \\
4
\end{array}\right]
$$

Using MDS, find the best Euclidean embedding for presenting the data in two dimensional space. Explain each step.

