

Prof. Dr. Rudolf Mathar, Dr. Gholamreza Alirezaei, Dr. Arash Behboodi

Exercise 7 Friday, December 23, 2016

Problem 1. (Fisher's Linear Discriminant Function for two classes) If Fisher's linear discriminant function is used for classification into two classes C_1 and C_2 , prove that an observation \mathbf{x} is allocated to C_1 if $\mathbf{a}^T(\mathbf{x} - \frac{1}{2}(\overline{\mathbf{x}_1} + \overline{\mathbf{x}_2})) > 0$ with $\mathbf{a} = \mathbf{W}^{-1}(\overline{\mathbf{x}_1} - \overline{\mathbf{x}_2})$.

Problem 2. (ML Discriminant Rule for two classes) Suppose that ML discriminant rule is used for classification into two classes C_1 and C_2 . The class distributions are Gaussian and known as $N_p(\mu_1, \Sigma_1)$ and $N_p(\mu_2, \Sigma_2)$ with $\Sigma_1 = \Sigma_2 = \Sigma$. The densities are:

$$f_l(\mathbf{u}) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{u} - \boldsymbol{\mu}_l)^T \mathbf{\Sigma}^{-1} (\mathbf{u} - \boldsymbol{\mu}_l)\right\}, \mathbf{u} \in \mathbb{R}^p. l = 1, 2.$$

Prove that the ML rule allocates \mathbf{x} to the class C_1 if

$$\alpha^T(\mathbf{x} - \boldsymbol{\mu}) > 0,$$

where $\alpha = \Sigma^{-1}(\mu_1 - \mu_2)$ and $\mu = \frac{1}{2}(\mu_1 + \mu_2)$.

Problem 3. (Eigenvalues in Fisher's Linear Discriminant Analysis) Let $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]^T \in \mathbb{R}^{n \times p}$ be samples and \mathbf{W} and \mathbf{B} are matrices corresponding to within-group and between-group sum of squares. Define $\mathbf{S} = \mathbf{X}^T \mathbf{E}_n \mathbf{X}$. Suppose that \mathbf{W} has rank p. Show that the following three eigenvectors are the same:

- a) the eigenvector corresponding to the largest eigenvalue of $\mathbf{W}^{-1}\mathbf{B}$
- b) the eigenvector corresponding to the largest eigenvalue of $\mathbf{W}^{-1}\mathbf{S}$
- c) the eigenvector corresponding to the smallest eigenvalue of $S^{-1}W$