Prof. Dr. Rudolf Mathar, Dr. Gholamreza Alirezaei, Dr. Arash Behboodi

Exercise 12

Friday, February 10, 2017

Problem 1. (Projection Matrix) Let \mathbf{X} be a matrix in $\mathbb{R}^{m \times n}$ such that $\left(\mathbf{X}^{T} \mathbf{X}\right)$ is invertible. Show that $\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}$ is the projection matrix onto the image of \mathbf{X}.

Problem 2. (Moore-Penrose pseudoinverse)
Let A be a matrix in $\mathbb{R}^{m \times n}$. The matrix \mathbf{B} in $\mathbb{R}^{n \times m}$ is called Moore-Penrose pseudoinverse of \mathbf{A} if the following conditions are satisfied:

- $\mathrm{ABA}=\mathrm{A}$
- $\mathrm{BAB}=\mathrm{B}$
- $\mathbf{A B}=(\mathbf{A B})^{T}$
- $\mathbf{B A}=(\mathbf{B A})^{T}$

The existence of this matrix has been proved by Penrose, 1955.
a) Prove that Moore-Penrose pseudoinverse of \mathbf{A}, denoted by \mathbf{A}^{+}is unique.
b) If $\operatorname{rk}(\mathbf{A})=m$, then $\mathbf{A}^{+}=\mathbf{A}^{T}\left(\mathbf{A} \mathbf{A}^{T}\right)^{-1}$.
c) If $\operatorname{rk}(\mathbf{A})=n$, then $\mathbf{A}^{+}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T}$.
d) Consider the singular value decomposition of \mathbf{A} given as $\mathbf{U D V}^{T}$ with $\mathbf{U} \in \mathbb{R}^{m \times m}$ and $\mathbf{V} \in \mathbb{R}^{n \times n}$ and $\mathbf{D} \in \mathbb{R}^{m \times n}$, a diagonal matrix of the singular values of \mathbf{A} :

$$
D=\left[\begin{array}{ll}
S & 0 \\
0 & 0
\end{array}\right]
$$

with $\mathbf{S}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right)$ and $\sigma_{i}>0, i=1, \ldots, r$. Show that $\mathbf{B}=\mathbf{V D}^{+} \mathbf{U}^{T}$ is Moore-Penrose pseudoinverse of \mathbf{A} where:

$$
\mathbf{D}^{+}=\left[\begin{array}{cc}
\mathbf{S}^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]^{T}
$$

Problem 3. (One-dimensional Linear Regression) Given n samples of $\left(x_{i}, y_{i}\right)$, consider the linear regression problem:

$$
y_{i}=\vartheta_{0}+\vartheta_{1} x_{i}+\epsilon_{i}, \quad i=1, \ldots, n .
$$

Find ϑ_{0} and ϑ_{1}.

