Prof. Dr. Rudolf Mathar, Dr. Gholamreza Alirezaei, Dr. Arash Behboodi

Exercise 1
 - Proposed Solution -

Friday, November 4, 2016

Solution of Problem 1

a) Since \mathbf{M} is a non-negative definite matrix, it can be written as:

$$
\mathbf{M}=\sum_{i} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{T},
$$

with $\lambda_{i} \geq 0$ and \mathbf{v}_{i} its eigenvector. The eigenvectors \mathbf{v}_{i} 's for $i=1, \ldots, n$ form an orthonormal basis for \mathbb{R}^{n} and therefore each vector $\mathbf{x} \in \mathbb{R}^{n}$ can be written as:

$$
\mathbf{x}=\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i}
$$

for some $\alpha_{i} \in \mathbb{R}^{n}$. Using this expansion, it can be seen that:

$$
\mathbf{M} \mathbf{x}=\sum_{i=1}^{n} \alpha_{i} \lambda_{i} \mathbf{v}_{i},
$$

and finally:

$$
\mathbf{x}^{T} \mathbf{M} \mathbf{x}=\mathbf{x}^{T}\left(\sum_{i=1}^{n} \alpha_{i} \lambda_{i} \mathbf{v}_{i}\right)=\sum_{i=1}^{n} \lambda_{i} \alpha_{i}^{2} \geq 0 .
$$

b) If \mathbf{M} is positive definite, same proof applies here with the difference that λ_{i} 's are strictly positive. In this case since $\mathbf{x} \neq 0$, at least one α_{i} is non-zero, say $\alpha_{1} \neq 0$. Then $\alpha_{1}^{2} \lambda_{1}>0$ which implies $\mathbf{x}^{T} \mathbf{M x}>0$.

Solution of Problem 2

a) Since $\mathbf{W} \succeq \mathbf{V}, \mathbf{W}-\mathbf{V}$ is non-negative definite. Therefore $\mathbf{x}^{T}(\mathbf{W}-\mathbf{V}) \mathbf{x} \geq 0$ for all $\mathrm{x} \in \mathbb{R}^{n}$, which means:

$$
\mathbf{x}^{T} \mathbf{W} \mathbf{x} \geq \mathbf{x}^{T} \mathbf{V} \mathbf{x}
$$

Using Courant-Fischer theorem, it is known that:

$$
\max _{S: \operatorname{dim}(S)=k} \min _{\mathbf{x} \in S ;\|x\|_{2}=1} \mathbf{x}^{T} \mathbf{W} \mathbf{x}=\lambda_{k}(\mathbf{W}) .
$$

and

$$
\max _{S: \operatorname{dim}(S)=k} \min _{x \in S ;\|x\|_{2}=1} \mathbf{x}^{T} \mathbf{V} \mathbf{x}=\lambda_{k}(\mathbf{V}) .
$$

However $\mathbf{x}^{T} \mathbf{W} \mathbf{x} \geq \mathbf{x}^{T} \mathbf{V} \mathbf{x}$ implies that $\lambda_{k}(\mathbf{W}) \geq \lambda_{k}(\mathbf{V})$.
b) Since $\mathbf{W} \succeq \mathbf{V}, \mathbf{W}-\mathbf{V}$ is non-negative definite. Therefore $\mathbf{x}^{T}(\mathbf{W}-\mathbf{V}) \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{n}$. Choose $\mathbf{x}=\mathbf{e}_{i}$ where \mathbf{e}_{i} is i th canonical basis with all zero elements except the i th element equal to one. Namely $\mathbf{e}_{i}(j)=0$ for $j \neq i$ and $\mathbf{e}_{i}(i)=1$. For example:

$$
\mathbf{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right]
$$

Therefore $\mathbf{e}_{i}^{T}(\mathbf{W}-\mathbf{V}) \mathbf{e}_{i}=w_{i i}-v_{i i}$ and since $\mathbf{W}-\mathbf{V} \succeq 0, w_{i i}-v_{i i} \geq 0 . v_{i i} \leq w_{i i}$, for $i=1, \ldots, n$
c) Similar to the previous problem, choose the vector $\mathbf{e}_{i j}$ such that $\mathbf{e}_{i j}(k)=0$ for $j \neq i, j$ and $\mathbf{e}_{i j}(i)=1$ and $\mathbf{e}_{i j}(j)=-1$. For example:

$$
\mathbf{e}_{23}=\left[\begin{array}{c}
0 \\
1 \\
-1 \\
\vdots \\
0
\end{array}\right]
$$

Since $\mathbf{W}-\mathbf{V} \succeq 0, \mathbf{e}_{i j}^{T}(\mathbf{W}-\mathbf{V}) \mathbf{e}_{i j} \geq 0$, but:

$$
(\mathbf{W}-\mathbf{V}) \mathbf{e}_{i j}=\left[\begin{array}{c}
\left(w_{1 i}-v_{1 i}\right)-\left(w_{1 j}-v_{1 j}\right) \\
\left(w_{2 i}-v_{2 i}\right)-\left(w_{2 j}-v_{2 j}\right) \\
\vdots \\
\left(w_{n i}-v_{n i}\right)-\left(w_{n j}-v_{n j}\right)
\end{array}\right]
$$

and

$$
\begin{aligned}
\mathbf{e}_{i j}^{T}(\mathbf{W}-\mathbf{V}) \mathbf{e}_{i j}= & {\left[\left(w_{i i}-v_{i i}\right)-\left(w_{i j}-v_{i j}\right)\right]-\left[\left(w_{j i}-v_{j i}\right)-\left(w_{j j}-v_{j j}\right)\right] } \\
& {\left[w_{i i}+w_{j j}-2 w_{i j}\right]-\left[v_{i i}+v_{j j}-2 v_{i j}\right] }
\end{aligned}
$$

Since $\mathbf{e}_{i j}^{T}(\mathbf{W}-\mathbf{V}) \mathbf{e}_{i j} \geq 0$, it holds that: $v_{i i}+v_{j j}-2 v_{i j} \leq w_{i i}+w_{j j}-2 w_{i j}$.
d) From the second part of the exercise, $v_{i i} \leq w_{i i}$, for $i=1, \ldots, n$. Therefore:

$$
\operatorname{tr}(\mathbf{V})=\sum_{i=1}^{n} v_{i i} \leq \sum_{i=1}^{n} w_{i i}=\operatorname{tr}(\mathbf{W})
$$

e) Note that $\operatorname{det}(\mathbf{V})=\prod_{i=1}^{n} \lambda_{i}(\mathbf{V})$ and $\operatorname{det}(\mathbf{W})=\prod_{i=1}^{n} \lambda_{i}(\mathbf{W})$. Using the first part of this exercise $\lambda_{i}(\mathbf{V}) \leq \lambda_{i}(\mathbf{W})$, for $i=1, \ldots, n$. Since all eigenvalues are non-negative, it holds that $\operatorname{det}(\mathbf{V}) \leq \operatorname{det}(\mathbf{W})$.

Solution of Problem 3

a) Consider $\mathbf{M}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. The eigenvalues are 0 which give $\rho(\mathbf{M})=0$. However $\mathbf{M} \neq 0$.
b) Let \mathbf{x} be the eigenvector corresponding to the eigenvalue λ with $|\lambda|=\rho(\mathbf{M})$. Without loss of generality, it can be assumed that $\|\mathbf{x}\|_{2}=1$. Therefore:

$$
\rho(\mathbf{M})^{2}=|\lambda|^{2}\|x\|^{2}=\|\mathbf{M x}\|_{2}^{2}=\sum_{i}\left(\sum_{j} m_{i j} x_{j}\right)^{2} .
$$

Using Cauchy-Schwartz inequality, we have:

$$
\left(\sum_{j} m_{i j} x_{j}\right)^{2} \leq\left(\sum_{j} m_{i j}^{2}\right)\left(\sum_{j} x_{j}^{2}\right)
$$

But since $\|\mathbf{x}\|_{2}=1$, then:

$$
\rho(\mathbf{M})^{2}=\sum_{i}\left(\sum_{j} m_{i j} x_{j}\right)^{2} \leq \sum_{i, j} m_{i j}^{2}=\|\mathbf{M}\|_{F}^{2} .
$$

