Prof. Dr. Rudolf Mathar, Dr. Gholamreza Alirezaei, Dr. Arash Behboodi
Exercise 4

- Proposed Solution -

Friday, November 25, 2016

Solution of Problem 1

The radii $r_{i}=\min \left\{R_{i}, C_{i}\right\}$ of the discs are calculated by the aid of $R_{i}=\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right|$ and $C_{j}=\sum_{\substack{i=1 \\ i \neq j}}^{n}\left|a_{i j}\right|$, and are given in the following table. The diagonal elements of \boldsymbol{A} are the centers of the discs.

Table 1: The centers and radii of Gerschgorin's circles

i	$a_{i i}$	r_{i}	R_{i}	C_{i}
1	10	0.8	2.0	0.8
2	9	0.8	0.8	1.1
3	$5+i$	0.5	0.5	1.4
4	6	1.0	1.0	1.1
5	1	0.6	0.7	0.6

From the below figure we can observe that all areas of the circles are located on the right side of the plane. But having positive eigenvalues is not sufficient for \boldsymbol{A} being positive definite. Since it is not symmetric, it will not be positive definite. Furthermore, we observe the limits $\lambda_{\min }=a_{55}-r_{5}=0.4$ and $\lambda_{\max }=a_{11}+r_{1}=10.8$. Note that since the disc located at a_{55} is disjoint from the others it contains exactly one of the eigenvalues.

Solution of Problem 2

Using Schur's inequality the region in which all eigenvalues of the matrix \boldsymbol{A} are concentrated, is a circle at zero with radius given by $\|\boldsymbol{A}\|_{2}^{2}=246.74$. The calculation of $\|\boldsymbol{A}\|_{2}^{2}$ is usually a
simple task and it only delivers a rough idea about the location of eigenvalues. The solution by Gerschgorin yields better results at the cost of computational complexity.

Solution of Problem 3

Note that both γ and β are positive. Rewrite $(1+\sqrt{\gamma})^{2}$ as $\left(1 \cdot 1+\sqrt{\beta} \cdot \sqrt{\frac{\gamma}{\beta}}\right)^{2}$ and apply the Cauchy-Bunyakovsky-Schwarz inequality to obtain $(1+\beta)\left(1+\frac{\gamma}{\beta}\right) \geq(1+\sqrt{\gamma})^{2}$. Equality holds, when $(1, \sqrt{\beta})$ and $\left(1, \sqrt{\frac{\gamma}{\beta}}\right)$ are linearly dependent, i.e., for $\beta=\gamma=1$.

Solution of Problem 4

a) The dominant eigenvalue $\lambda_{\text {dom }}$ is visible when the ratio $\gamma_{2}=\frac{p}{n_{2}}$ is less than $\beta_{\text {dom }}^{2}$. With $\beta_{\mathrm{dom}}=\beta_{2}=0.5$ we obtain $n_{\min }=n_{2}=\frac{p}{\beta_{2}^{2}}=2000$. For this number of samples, the dominant eigenvalue of the sample covariance \mathbf{S}_{n} tends to $\left(1+\sqrt{\gamma_{2}}\right)^{2}=(1+0.5)^{2}=$ $2.25 \gg 1.5$. The distance $\left\langle\boldsymbol{v}_{2}, \boldsymbol{v}_{\mathrm{dom}}\right\rangle=\frac{1-\gamma_{1} / \beta_{1}^{2}}{1-\gamma_{1} / \beta_{1}}$ is equal to zero. Figure 1 shows eigenvalue distributions for this choice.

Figure 1: Eigenvalues of \mathbf{S}_{n} for Spike model with $\beta_{1}=0.2, \beta_{2}=0.5, n=2000$
b) To see both eigenvalues the ratio $\gamma_{1}=\frac{p}{n_{1}}$ must be less than β_{1}^{2}. With $\beta_{1}=0.2$ we obtain $n_{1}=\frac{p}{\beta_{1}^{2}}=12500$. For this number of samples, the dominant eigenvalue $\lambda_{\text {dom }}$ of the sample covariance \mathbf{S}_{n} tends to $\left(1+\beta_{2}\right)\left(1+\frac{\gamma_{1}}{\beta_{2}}\right)=1.5 \cdot 1.08=1.62 \approx 1.5=1+\beta_{2}$. The distance $\left\langle\boldsymbol{v}_{2}, \boldsymbol{v}_{\text {dom }}\right\rangle=\frac{1-\gamma_{1} / \beta_{2}^{2}}{1-\gamma_{1} / \beta_{2}}$ is equal to $0.913 \approx 1$ which shows that \boldsymbol{v}_{2} is nearly a unit norm vector parallel to the dominant eigenvector $\boldsymbol{v}_{\text {dom }}$. Figure 2 shows eigenvalue distributions for this choice.

By enlarging n to 50000 both eigenvalues β_{1} and β_{2} become visible in the MarchenkoPastur density as shown in Figure 3.

Figure 2: Eigenvalues of \mathbf{S}_{n} for Spike model with $\beta_{1}=0.2, \beta_{2}=0.5, n=12500$

Figure 3: Eigenvalues of \mathbf{S}_{n} for Spike model with $\beta_{1}=0.2, \beta_{2}=0.5, n=50000$

