



Exercise 5 - Proposed Solution -Friday, December 2, 2016

Solution of Problem 1

a) Note that:

$$\|\mathbf{x}_i - \mathbf{x}_j\|^2 = \mathbf{x}_i^T \mathbf{x}_i + \mathbf{x}_j^T \mathbf{x}_j - 2\mathbf{x}_i^T \mathbf{x}_j^T.$$

It is easy to check that:

$$(\mathbf{X}\mathbf{X}^T)_{ij} = \mathbf{x}_i \mathbf{x}_j^T.$$

Consider $\hat{\mathbf{x}} = \frac{1}{2} [\mathbf{x}_1^T \mathbf{x}_1, \dots, \mathbf{x}_n^T \mathbf{x}_n]^T$. We have:

$$\mathbf{1}_{n}\hat{\mathbf{x}}^{T} = \begin{bmatrix} \frac{1}{2}\mathbf{x}_{1}^{T}\mathbf{x}_{1} & \dots & \frac{1}{2}\mathbf{x}_{n}^{T}\mathbf{x}_{n} \\ \frac{1}{2}\mathbf{x}_{1}^{T}\mathbf{x}_{1} & \dots & \frac{1}{2}\mathbf{x}_{n}^{T}\mathbf{x}_{n} \\ \vdots & \ddots & \vdots \\ \frac{1}{2}\mathbf{x}_{1}^{T}\mathbf{x}_{1} & \dots & \frac{1}{2}\mathbf{x}_{n}^{T}\mathbf{x}_{n} \end{bmatrix}$$

This means that $(\mathbf{1}_n \hat{\mathbf{x}}^T)_{ij} = \frac{1}{2} \mathbf{x}_j^T \mathbf{x}_j$ and moreover $(\hat{\mathbf{x}} \mathbf{1}_n^T)_{ij} = \frac{1}{2} \mathbf{x}_i^T \mathbf{x}_i$ Therefore:

$$\left(-\frac{1}{2}\mathbf{D}^{(2)}(\mathbf{X})\right)_{ij} = (\mathbf{X}\mathbf{X})_{ij} - (\mathbf{1}_n\hat{\mathbf{x}}^T)_{ij} - (\hat{\mathbf{x}}\mathbf{1}_n^T)_{ij}.$$

The element-wise identity implies the desired identity.

b) Since $-\frac{1}{2}\mathbf{E}_n \Delta^{(2)}\mathbf{E}_n$ is non-negative definite and has the rank $\operatorname{rk}(-\frac{1}{2}\mathbf{E}_n\Delta^{(2)}\mathbf{E}_n) \leq k$, it can be written as:

$$-\frac{1}{2}\mathbf{E}_n \boldsymbol{\Delta}^{(2)} \mathbf{E}_n = \sum_{i=1}^k \lambda_i \mathbf{v}_i \mathbf{v}_i^T,$$

where $\lambda_1 \geq \cdots \geq \lambda_k$ are top k eigenvalues of the matrix $-\frac{1}{2}\mathbf{E}_n \Delta^{(2)}\mathbf{E}_n$ with corresponding orthonormal eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$. This can be obtained from spectral decomposition of $-\frac{1}{2}\mathbf{E}_n\Delta^{(2)}\mathbf{E}_n$. Using this representation, the matrix \mathbf{X} can be constructed as $\mathbf{X} = [\sqrt{\lambda_1}\mathbf{v}_1, \ldots, \sqrt{\lambda_k}\mathbf{v}_k]$. It can be seen that:

$$\mathbf{X}\mathbf{X}^{T} = \sum_{i=1}^{k} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{T} = -\frac{1}{2} \mathbf{E}_{n} \mathbf{\Delta}^{(2)} \mathbf{E}_{n}$$

Moreover the image of $-\frac{1}{2}\mathbf{E}_n \Delta^{(2)}\mathbf{E}_n$ is a subset of the image of \mathbf{E}_n . Therefore for all non-zero λ_i , the corresponding eigenvector \mathbf{v}_i belongs to the image of \mathbf{E}_n and since it is an orthogonal projection:

$$\mathbf{E}_n \mathbf{v}_i = \mathbf{v}_i.$$

If $\lambda_i = 0$, then trivially $\mathbf{E}_n \sqrt{\lambda_i} \mathbf{v}_i = \sqrt{\lambda_i} \mathbf{v}_i = 0$. This means that:

$$\mathbf{E}_n \mathbf{X} = \mathbf{X} \implies \mathbf{X}^T \mathbf{E}_n = \mathbf{X}^T.$$

c) The direction where $\mathbf{A} = 0$ is trivial. Let us assume $\mathbf{E}_n \mathbf{A} \mathbf{E}_n = 0$. This means that the matrix \mathbf{A} takes each vector in the image of \mathbf{E}_n to the kernel of \mathbf{E}_n . Note that the kernel of \mathbf{E}_n is spanned by $\mathbf{1}_n$, so for each \mathbf{v} such that $\mathbf{v}^T \mathbf{1}_n = 0$, we have:

$$\exists \alpha \in \mathbb{R}; \mathbf{Av} = \alpha \mathbf{1}_n.$$

Pich $\mathbf{v} = \mathbf{e}_i - \mathbf{e}_j$. The equation above implies that $(\mathbf{A}\mathbf{v})_i = (\mathbf{A}\mathbf{v})_j$. But $(\mathbf{A}\mathbf{v})_k = a_{ki} - a_{kj}$. Therefore:

$$a_{ii} - a_{ij} = a_{ji} - a_{jj}.$$

But $a_{kk} = 0$ for all $1 \le k \le n$ and **A** is symmetric. Therefore $a_{ij} = 0$ for all i, j which means that $\mathbf{A} = 0$.

Solution of Problem 2

a) First of all, note that:

$$\overline{\mathbf{x}} = \frac{1}{n} \mathbf{X} \mathbf{1}_n.$$

Moreover:

$$\mathbf{S}_n = \frac{1}{n-1} (\mathbf{X} - \overline{\mathbf{x}} \mathbf{1}_n^T) (\mathbf{X} - \overline{\mathbf{x}} \mathbf{1}_n^T)^T.$$

Therefore:

$$\mathbf{S}_n = \frac{1}{n-1} (\mathbf{X} - \frac{1}{n} \mathbf{X} \mathbf{1}_n \mathbf{1}_n^T) (\mathbf{X} - \frac{1}{n} \mathbf{X} \mathbf{1}_n \mathbf{1}_n^T)^T = \frac{1}{n-1} \mathbf{X} \mathbf{E}_n \mathbf{E}_n^T \mathbf{X}^T.$$

Using $\mathbf{E}_n \mathbf{E}_n = \mathbf{E}_n$, we have \mathbf{S}_n is equal to $\frac{1}{n-1} \mathbf{X} \mathbf{E}_n \mathbf{X}^T$.

b) The result of PCA is $\mathbf{Q}(\mathbf{x}_i - \overline{\mathbf{x}})$. This is indeed equal to $\mathbf{Q}(\mathbf{x}_i - \frac{1}{n}\mathbf{X}\mathbf{1}_n)$. Constructing the matrix \mathbf{X} as suggested, the projected points can be written as:

$$\mathbf{Q}(\mathbf{X} - \frac{1}{n}\mathbf{X}\mathbf{1}_n\mathbf{1}_n^T) = \mathbf{Q}\mathbf{X}\mathbf{E}_n.$$

c) Let the singular value decomposition of \mathbf{XE}_n be:

$$\mathbf{X}\mathbf{E}_n = \mathbf{U}_{p \times p} \mathbf{\Lambda} \mathbf{V}_{n \times p}^{T}.$$

It is known that:

$$\mathbf{S}_n = \frac{1}{n-1} \mathbf{U} \mathbf{\Lambda}^2 \mathbf{U}^T,$$

and top k eigenvectors of \mathbf{S}_n are given therefore by picking first k columns of U, denoted by \mathbf{U}_k . In any case, we have:

$$\mathbf{U}_{k}^{T}\mathbf{X} = \begin{bmatrix} \mathbf{u}_{1}^{T}\mathbf{x}_{1} & \dots & \mathbf{u}_{1}^{T}\mathbf{x}_{n} \\ \vdots & \ddots & \vdots \\ \mathbf{u}_{k}^{T}\mathbf{x}_{1} & \dots & \mathbf{u}_{k}^{T}\mathbf{x}_{n} \end{bmatrix} = [\hat{\mathbf{x}}_{1}, \dots, \hat{\mathbf{x}}_{n}],$$

where $\hat{\mathbf{x}}_i$ is the projected point into the k dimensional subspace. From the previous point, the projected points are given by $\mathbf{U}_k^T \mathbf{X} \mathbf{E}_n$.

See that:

$$\mathbf{U}_k^T \mathbf{X} \mathbf{E}_n = \mathbf{U}_k^T \mathbf{U} \mathbf{\Lambda} \mathbf{V}^T$$

But :

$$\mathbf{U}_{k}^{T}\mathbf{U} = \begin{bmatrix} \mathbf{u}_{1}^{T}\mathbf{u}_{1} & \dots & \mathbf{u}_{1}^{T}\mathbf{u}_{p} \\ \vdots & \ddots & \vdots \\ \mathbf{u}_{k}^{T}\mathbf{u}_{1} & \dots & \mathbf{u}_{k}^{T}\mathbf{u}_{p} \end{bmatrix} = [\mathbf{I}_{k} \ \mathbf{0}_{k \times p-k}].$$

Using the fact that $\Lambda_{ii}^2 = \lambda_i$, we have:

$$\mathbf{U}_{k}^{T}\mathbf{U}\mathbf{\Lambda} = [\mathbf{I}_{k} \ \mathbf{0}_{k\times p-k}]\mathbf{\Lambda} = [\operatorname{diag}(\sqrt{\lambda_{1}},\sqrt{\lambda_{2}},\ldots,\sqrt{\lambda_{k}})_{k\times k} \ \mathbf{0}_{k\times p-k}]$$

Now write $\mathbf{V} = [\mathbf{v}_1 \dots \mathbf{v}_p]$ where $\mathbf{v}_i \in \mathbb{R}^n$. We have:

$$\mathbf{U}_{k}^{T}\mathbf{U}\mathbf{\Lambda}\mathbf{V}^{T} = [\operatorname{diag}(\sqrt{\lambda_{1}},\sqrt{\lambda_{2}},\ldots,\sqrt{\lambda_{k}})_{k\times k} \quad \mathbf{0}_{k\times p-k}]\mathbf{V}^{T} = \begin{bmatrix} \sqrt{\lambda_{1}}\mathbf{v}_{1}^{T} \\ \vdots \\ \sqrt{\lambda_{k}}\mathbf{v}_{k}^{T} \end{bmatrix}$$

d) MDS starts by finding $-\frac{1}{2}\mathbf{E}_n\mathbf{D}^{(2)}\mathbf{E}_n$ which is $\mathbf{E}_n\mathbf{X}^T\mathbf{X}\mathbf{E}_n$ for Euclidean distance matrix. The spectral decomposition of $\mathbf{E}_n\mathbf{X}^T\mathbf{X}\mathbf{E}_n$ is then found by $\hat{\mathbf{V}}\operatorname{diag}(\lambda_1,\ldots,\lambda_n)\hat{\mathbf{V}}^T$ where $\hat{\mathbf{V}} = [\hat{\mathbf{v}}_1\ldots\hat{\mathbf{v}}_n]$ is the eigenvector matrix. Using SVD of $\mathbf{X}\mathbf{E}_n$ above we get:

$$\mathbf{E}_n \mathbf{X}^T \mathbf{X} \mathbf{E}_n = \mathbf{V} \mathbf{\Lambda}^2 \mathbf{V}^T$$

Therefore if $\mathbf{V} = [\mathbf{v}_1 \dots \mathbf{v}_p]$, then for $i = 1, \dots, p$ we have:

 $\hat{\mathbf{v}}_i = \mathbf{v}_i.$

The solution to MDS is then $\mathbf{X}^{*T} = [\sqrt{\lambda_1}\mathbf{v}_1, \dots, \sqrt{\lambda_k}\mathbf{v}_k] \in \mathbb{R}^{n \times k}$. This means that:

 $\mathbf{U}_k^T \mathbf{U} \mathbf{\Lambda} \mathbf{V}^T = \mathbf{X}^*.$

It shows that applying MDS on the distance matrix $\mathbf{D}(\mathbf{X})$ provides the same result as PCA.

Solution of Problem 3

Consider four samples in \mathbb{R}^3 given as follows:

$$\mathbf{x}_1 = \begin{bmatrix} 1\\2\\-3 \end{bmatrix}, \mathbf{x}_2 = \begin{bmatrix} 3\\-1\\-2 \end{bmatrix} \mathbf{x}_3 = \begin{bmatrix} -4\\2\\2 \end{bmatrix} \mathbf{x}_4 = \begin{bmatrix} -3\\-1\\4 \end{bmatrix}.$$

MDS steps are as follows:

a) Find $\mathbf{E}_n \mathbf{X}^T \mathbf{X} \mathbf{E}_n$ where $\mathbf{X} = [\mathbf{x}_1 \dots \mathbf{x}_n]$. In this step, **X** is obtained as:

$$\mathbf{X} = \begin{bmatrix} 1 & 3 & -4 & -3 \\ 2 & -1 & 2 & -1 \\ -3 & -2 & 2 & 4 \end{bmatrix}$$

We have:

$$\mathbf{E}_{n} \mathbf{X}^{T} \mathbf{X} \mathbf{E}_{n} = \begin{bmatrix} 15.875 & 11.625 & -9.125 & -18.375 \\ 11.625 & 21.375 & -18.375 & -14.625 \\ -9.125 & -18.375 & 15.875 & 11.625 \\ -18.375 & -14.625 & 11.625 & 21.375 \end{bmatrix}$$

b) Find spectral decomposition of $\mathbf{E}_n \mathbf{X}^T \mathbf{X} \mathbf{E}_n = \mathbf{V} \operatorname{diag}(\lambda_1, \dots, \lambda_n) \mathbf{V}^T$. For this example eigenvalues and eigenvectors are given by:

$$\operatorname{diag}(\lambda_1,\ldots,\lambda_n) = \begin{bmatrix} 61\\13.5\\0\\0 \end{bmatrix}$$

	[-0.45267873]	0.5	-0.65666815	0.25502096]
$\mathbf{V} =$	-0.54321448	-0.5	-0.31320188	-0.63102251
	0.45267873	0.5	-0.28197767	-0.71157191
	0.54321448	-0.5	-0.62544394	0.17447155

c)
$$\mathbf{X}^*$$
 is given by $[\sqrt{\lambda_1}\mathbf{v}_1, \dots, \sqrt{\lambda_k}\mathbf{v}_k]^T$.

	[-3.53553391]	1.83711731
$\mathbf{X}^{*T} =$	-4.24264069	-1.83711731
$\Lambda =$	3.53553391	1.83711731
	4.24264069	-1.83711731

Checking with PCA process, similar output is found.