Prof. Dr. Rudolf Mathar, Dr. Gholamreza Alirezaei, Dr. Arash Behboodi

Exercise 5
 - Proposed Solution -

Friday, December 2, 2016

Solution of Problem 1

a) Note that:

$$
\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}=\mathbf{x}_{i}^{T} \mathbf{x}_{i}+\mathbf{x}_{j}^{T} \mathbf{x}_{j}-2 \mathbf{x}_{i}^{T} \mathbf{x}_{j}^{T}
$$

It is easy to check that:

$$
\left(\mathbf{X X}^{T}\right)_{i j}=\mathbf{x}_{i} \mathbf{x}_{j}^{T} .
$$

Consider $\hat{\mathbf{x}}=\frac{1}{2}\left[\mathbf{x}_{1}^{T} \mathbf{x}_{1}, \ldots, \mathbf{x}_{n}^{T} \mathbf{x}_{n}\right]^{T}$. We have:

$$
\mathbf{1}_{n} \hat{\mathbf{x}}^{T}=\left[\begin{array}{ccc}
\frac{1}{2} \mathbf{x}_{1}^{T} \mathbf{x}_{1} & \ldots & \frac{1}{2} \mathbf{x}_{n}^{T} \mathbf{x}_{n} \\
\frac{1}{2} \mathbf{x}_{1}^{T} \mathbf{x}_{1} & \ldots & \frac{1}{2} \mathbf{x}_{n}^{T} \mathbf{x}_{n} \\
\vdots & \ddots & \vdots \\
\frac{1}{2} \mathbf{x}_{1}^{T} \mathbf{x}_{1} & \ldots & \frac{1}{2} \mathbf{x}_{n}^{T} \mathbf{x}_{n}
\end{array}\right]
$$

This means that $\left(\mathbf{1}_{n} \hat{\mathbf{x}}^{T}\right)_{i j}=\frac{1}{2} \mathbf{x}_{j}^{T} \mathbf{x}_{j}$ and moreover $\left(\hat{\mathbf{x}} \mathbf{1}_{n}^{T}\right)_{i j}=\frac{1}{2} \mathbf{x}_{i}^{T} \mathbf{x}_{i}$
Therefore:

$$
\left(-\frac{1}{2} \mathbf{D}^{(2)}(\mathbf{X})\right)_{i j}=(\mathbf{X X})_{i j}-\left(\mathbf{1}_{n} \hat{\mathbf{x}}^{T}\right)_{i j}-\left(\hat{\mathbf{x}} \mathbf{1}_{n}^{T}\right)_{i j} .
$$

The element-wise identity implies the desired identity.
b) Since $-\frac{1}{2} \mathbf{E}_{n} \boldsymbol{\Delta}{ }^{(2)} \mathbf{E}_{n}$ is non-negative definite and has the rank $\operatorname{rk}\left(-\frac{1}{2} \mathbf{E}_{n} \boldsymbol{\Delta}^{(2)} \mathbf{E}_{n}\right) \leq k$, it can be written as:

$$
-\frac{1}{2} \mathbf{E}_{n} \boldsymbol{\Delta}^{(2)} \mathbf{E}_{n}=\sum_{i=1}^{k} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{T},
$$

where $\lambda_{1} \geq \cdots \geq \lambda_{k}$ are top k eigenvalues of the matrix $-\frac{1}{2} \mathbf{E}_{n} \boldsymbol{\Delta}^{(2)} \mathbf{E}_{n}$ with corresponding orthonormal eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$. This can be obtained from spectral decomposition of $-\frac{1}{2} \mathbf{E}_{n} \boldsymbol{\Delta}{ }^{(2)} \mathbf{E}_{n}$. Using this representation, the matrix \mathbf{X} can be constructed as $\mathbf{X}=$ $\left[\sqrt{\lambda_{1}} \mathbf{v}_{1}, \ldots, \sqrt{\lambda_{k}} \mathbf{v}_{k}\right]$. It can be seen that:

$$
\mathbf{X X}^{T}=\sum_{i=1}^{k} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{T}=-\frac{1}{2} \mathbf{E}_{n} \boldsymbol{\Delta}^{(2)} \mathbf{E}_{n} .
$$

Moreover the image of $-\frac{1}{2} \mathbf{E}_{n} \boldsymbol{\Delta}^{(2)} \mathbf{E}_{n}$ is a subset of the image of \mathbf{E}_{n}. Therefore for all non-zero λ_{i}, the corresponding eigenvector \mathbf{v}_{i} belongs to the image of \mathbf{E}_{n} and since it is an orthogonal projection:

$$
\mathbf{E}_{n} \mathbf{v}_{i}=\mathbf{v}_{i} .
$$

If $\lambda_{i}=0$, then trivially $\mathbf{E}_{n} \sqrt{\lambda_{i}} \mathbf{v}_{i}=\sqrt{\lambda_{i}} \mathbf{v}_{i}=0$. This means that:

$$
\mathbf{E}_{n} \mathbf{X}=\mathbf{X} \Longrightarrow \mathbf{X}^{T} \mathbf{E}_{n}=\mathbf{X}^{T}
$$

c) The direction where $\mathbf{A}=0$ is trivial. Let us assume $\mathbf{E}_{n} \mathbf{A} \mathbf{E}_{n}=0$. This means that the matrix \mathbf{A} takes each vector in the image of \mathbf{E}_{n} to the kernel of \mathbf{E}_{n}. Note that the kernel of \mathbf{E}_{n} is spanned by $\mathbf{1}_{n}$, so for each \mathbf{v} such that $\mathbf{v}^{T} \mathbf{1}_{n}=0$, we have:

$$
\exists \alpha \in \mathbb{R} ; \mathbf{A v}=\alpha \mathbf{1}_{n} .
$$

Pich $\mathbf{v}=\mathbf{e}_{i}-\mathbf{e}_{j}$. The equation above implies that $(\mathbf{A v})_{i}=(\mathbf{A v})_{j}$. But $(\mathbf{A v})_{k}=a_{k i}-a_{k j}$. Therefore:

$$
a_{i i}-a_{i j}=a_{j i}-a_{j j} .
$$

But $a_{k k}=0$ for all $1 \leq k \leq n$ and \mathbf{A} is symmetric. Therefore $a_{i j}=0$ for all i, j which means that $\mathbf{A}=0$.

Solution of Problem 2

a) First of all, note that:

$$
\overline{\mathbf{x}}=\frac{1}{n} \mathbf{X} \mathbf{1}_{n} .
$$

Moreover:

$$
\mathbf{S}_{n}=\frac{1}{n-1}\left(\mathbf{X}-\overline{\mathbf{x}} \mathbf{1}_{n}^{T}\right)\left(\mathbf{X}-\overline{\mathbf{x}} \mathbf{1}_{n}^{T}\right)^{T} .
$$

Therefore:

$$
\mathbf{S}_{n}=\frac{1}{n-1}\left(\mathbf{X}-\frac{1}{n} \mathbf{X} \mathbf{1}_{n} \mathbf{1}_{n}^{T}\right)\left(\mathbf{X}-\frac{1}{n} \mathbf{X} \mathbf{1}_{n} \mathbf{1}_{n}^{T}\right)^{T}=\frac{1}{n-1} \mathbf{X} \mathbf{E}_{n} \mathbf{E}_{n}^{T} \mathbf{X}^{T} .
$$

Using $\mathbf{E}_{n} \mathbf{E}_{n}=\mathbf{E}_{n}$, we have \mathbf{S}_{n} is equal to $\frac{1}{n-1} \mathbf{X} \mathbf{E}_{n} \mathbf{X}^{T}$.
b) The result of PCA is $\mathbf{Q}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)$. This is indeed equal to $\mathbf{Q}\left(\mathbf{x}_{i}-\frac{1}{n} \mathbf{X} \mathbf{1}_{n}\right)$. Constructing the matrix \mathbf{X} as suggested, the projected points can be written as:

$$
\mathbf{Q}\left(\mathbf{X}-\frac{1}{n} \mathbf{X} \mathbf{1}_{n} \mathbf{1}_{n}^{T}\right)=\mathbf{Q} \mathbf{X E} \mathbf{E}_{n} .
$$

c) Let the singular value decomposition of $\mathbf{X E}_{n}$ be:

$$
\mathbf{X E}_{n}=\mathbf{U}_{p \times p} \boldsymbol{\Lambda} \mathbf{V}_{n \times p}{ }^{T} .
$$

It is known that:

$$
\mathbf{S}_{n}=\frac{1}{n-1} \mathbf{U} \boldsymbol{\Lambda}^{2} \mathbf{U}^{T}
$$

and top k eigenvectors of \mathbf{S}_{n} are given therefore by picking first k columns of \mathbf{U}, denoted by \mathbf{U}_{k}. In any case, we have:

$$
\mathbf{U}_{k}^{T} \mathbf{X}=\left[\begin{array}{ccc}
\mathbf{u}_{1}^{T} \mathbf{x}_{1} & \ldots & \mathbf{u}_{1}^{T} \mathbf{x}_{n} \\
\vdots & \ddots & \vdots \\
\mathbf{u}_{k}^{T} \mathbf{x}_{1} & \ldots & \mathbf{u}_{k}^{T} \mathbf{x}_{n}
\end{array}\right]=\left[\hat{\mathbf{x}}_{1}, \ldots, \hat{\mathbf{x}}_{n}\right],
$$

where $\hat{\mathbf{x}}_{i}$ is the projected point into the k dimensional subspace. From the previous point, the projected points are given by $\mathbf{U}_{k}^{T} \mathbf{X E}_{n}$.

See that:

$$
\mathbf{U}_{k}^{T} \mathbf{X} \mathbf{E}_{n}=\mathbf{U}_{k}^{T} \mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{T}
$$

But :

$$
\mathbf{U}_{k}^{T} \mathbf{U}=\left[\begin{array}{ccc}
\mathbf{u}_{1}^{T} \mathbf{u}_{1} & \ldots & \mathbf{u}_{1}^{T} \mathbf{u}_{p} \\
\vdots & \ddots & \vdots \\
\mathbf{u}_{k}^{T} \mathbf{u}_{1} & \ldots & \mathbf{u}_{k}^{T} \mathbf{u}_{p}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{I}_{k} & \mathbf{0}_{k \times p-k}
\end{array}\right]
$$

Using the fact that $\boldsymbol{\Lambda}_{i i}^{2}=\lambda_{i}$, we have:

$$
\mathbf{U}_{k}^{T} \mathbf{U} \boldsymbol{\Lambda}=\left[\begin{array}{ll}
\mathbf{I}_{k} & \mathbf{0}_{k \times p-k}
\end{array}\right] \boldsymbol{\Lambda}=\left[\operatorname{diag}\left(\sqrt{\lambda_{1}}, \sqrt{\lambda_{2}}, \ldots, \sqrt{\lambda_{k}}\right)_{k \times k} \mathbf{0}_{k \times p-k}\right]
$$

Now write $\mathbf{V}=\left[\mathbf{v}_{1} \ldots \mathbf{v}_{p}\right]$ where $\mathbf{v}_{i} \in \mathbb{R}^{n}$. We have:

$$
\mathbf{U}_{k}^{T} \mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{T}=\left[\operatorname{diag}\left(\sqrt{\lambda_{1}}, \sqrt{\lambda}_{2}, \ldots, \sqrt{\lambda_{k}}\right)_{k \times k} \quad \mathbf{0}_{k \times p-k}\right] \mathbf{V}^{T}=\left[\begin{array}{c}
\sqrt{\lambda_{1}} \mathbf{v}_{1}^{T} \\
\vdots \\
\sqrt{\lambda_{k}} \mathbf{v}_{k}^{T}
\end{array}\right]
$$

d) MDS starts by finding $-\frac{1}{2} \mathbf{E}_{n} \mathbf{D}^{(2)} \mathbf{E}_{n}$ which is $\mathbf{E}_{n} \mathbf{X}^{T} \mathbf{X} \mathbf{E}_{n}$ for Euclidean distance matrix. The spectral decomposition of $\mathbf{E}_{n} \mathbf{X}^{T} \mathbf{X} \mathbf{E}_{n}$ is then found by $\hat{\mathbf{V}} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \hat{\mathbf{V}}^{T}$ where $\hat{\mathbf{V}}=\left[\hat{\mathbf{v}}_{1} \ldots \hat{\mathbf{v}}_{n}\right]$ is the eigenvector matrix. Using SVD of $\mathbf{X E}_{n}$ above we get:

$$
\mathbf{E}_{n} \mathbf{X}^{T} \mathbf{X} \mathbf{E}_{n}=\mathbf{V} \boldsymbol{\Lambda}^{2} \mathbf{V}^{T}
$$

Therefore if $\mathbf{V}=\left[\mathbf{v}_{1} \ldots \mathbf{v}_{p}\right]$, then for $i=1, \ldots, p$ we have:

$$
\hat{\mathbf{v}}_{i}=\mathbf{v}_{i} .
$$

The solution to MDS is then $\mathbf{X}^{* T}=\left[\sqrt{\lambda_{1}} \mathbf{v}_{1}, \ldots, \sqrt{\lambda_{k}} \mathbf{v}_{k}\right] \in \mathbb{R}^{n \times k}$. This means that:

$$
\mathbf{U}_{k}^{T} \mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{T}=\mathbf{X}^{*}
$$

It shows that applying MDS on the distance matrix $\mathbf{D}(\mathbf{X})$ provides the same result as PCA.

Solution of Problem 3

Consider four samples in \mathbb{R}^{3} given as follows:

$$
\mathbf{x}_{1}=\left[\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{c}
3 \\
-1 \\
-2
\end{array}\right] \mathbf{x}_{3}=\left[\begin{array}{c}
-4 \\
2 \\
2
\end{array}\right] \mathbf{x}_{4}=\left[\begin{array}{c}
-3 \\
-1 \\
4
\end{array}\right] .
$$

MDS steps are as follows:
a) Find $\mathbf{E}_{n} \mathbf{X}^{T} \mathbf{X E}_{n}$ where $\mathbf{X}=\left[\mathbf{x}_{1} \ldots \mathbf{x}_{n}\right]$.

In this step, \mathbf{X} is obtained as:

$$
\mathbf{X}=\left[\begin{array}{cccc}
1 & 3 & -4 & -3 \\
2 & -1 & 2 & -1 \\
-3 & -2 & 2 & 4
\end{array}\right]
$$

We have:

$$
\mathbf{E}_{n} \mathbf{X}^{T} \mathbf{X E}_{n}=\left[\begin{array}{cccc}
15.875 & 11.625 & -9.125 & -18.375 \\
11.625 & 21.375 & -18.375 & -14.625 \\
-9.125 & -18.375 & 15.875 & 11.625 \\
-18.375 & -14.625 & 11.625 & 21.375
\end{array}\right]
$$

b) Find spectral decomposition of $\mathbf{E}_{n} \mathbf{X}^{T} \mathbf{X} \mathbf{E}_{n}=\mathbf{V} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \mathbf{V}^{T}$. For this example eigenvalues and eigenvectors are given by:

$$
\begin{gathered}
\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\left[\begin{array}{c}
61 \\
13.5 \\
0 \\
0
\end{array}\right] \\
\mathbf{V}=\left[\begin{array}{cccc}
-0.45267873 & 0.5 & -0.65666815 & 0.25502096 \\
-0.54321448 & -0.5 & -0.31320188 & -0.63102251 \\
0.45267873 & 0.5 & -0.28197767 & -0.71157191 \\
0.54321448 & -0.5 & -0.62544394 & 0.17447155
\end{array}\right]
\end{gathered}
$$

c) \mathbf{X}^{*} is given by $\left[\sqrt{\lambda_{1}} \mathbf{v}_{1}, \ldots, \sqrt{\lambda_{k}} \mathbf{v}_{k}\right]^{T}$.

$$
\mathbf{X}^{* T}=\left[\begin{array}{cc}
-3.53553391 & 1.83711731 \\
-4.24264069 & -1.83711731 \\
3.53553391 & 1.83711731 \\
4.24264069 & -1.83711731
\end{array}\right]
$$

Checking with PCA process, similar output is found.

