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Solution of Problem 1

a) (2-Classes) For the dataset with two classes, Figure 1 presents the linear discriminant
rule. Note that maximum likelihood discriminant rule is the same for two classes.

Figure 1: Dataset with two classes

The steps are as follows:

i) For each class find the class mean xk; find x; find W and B (or S instead)
ii) Perform spectral decomposition of W−1B (or W−1S) and find the maximum

eigenvalue a.
iii) Discriminant Rule allocates a point x to the group l if |aT x−aT xl| < |aT x−aT xj|

for all j = 1, . . . , g. The borders of regions are determined by |aT x − aT xl| =
|aT x− aT xj|. These lines are given by:

aT x− aT
(xk + xl

2

)
= 0.

b) (3-Classes) For the dataset with three classes, Figure 2 presents the linear discriminant
rule and maximum likelihood discriminant rule.
The steps are as follows:



Figure 2: Dataset with three classes

i) Find the maximum likelihood estimation Σ̂ of Σ as W
n
; find the class mean xk.

ii) The ML rule allocates x to Cl which minimizes the Mahalanobis distance:

(x− xl)T Σ̂−1(x− xl).

Solution of Problem 2

a) (2-Classes) For the dataset with two classes, Figure 3 presents the linear discriminant
rule. Note that maximum likelihood discriminant rule is the same for two classes.
The steps are as follows:

i) For each class find the class mean xk; find x; find W and B (or S instead)
ii) Perform spectral decomposition of W−1B (or W−1S) and find the maximum

eigenvalue a.
iii) Discriminant Rule allocates a point x to the group l if |aT x−aT xl| < |aT x−aT xj|

for all j = 1, . . . , g. The borders of regions are determined by |aT x − aT xl| =
|aT x− aT xj|. These lines are given by:

aT x− aT
(xk + xl

2

)
= 0.



Figure 3: Dataset with two classes

b) (3-Classes) For the dataset with three classes, Figure 4 presents the linear discriminant
rule and maximum likelihood discriminant rule.
The steps are as follows:

i) Find the maximum likelihood estimation Σ̂ of Σ as W
n
; find the class mean xk.

ii) The ML rule allocates x to Cl which minimizes the Mahalanobis distance:

(x− xl)T Σ̂−1(x− xl).



Figure 4: Dataset with three classes

Solution of Problem 3

a) If the n points are clustered into S1, . . . , Sn, then ML-cluster analysis writes as

max
S1,...,Sg

g∑
k=1

∑
i∈Sk

log fk(xi) = max
S1,...,Sg

g∑
k=1

∑
i∈Sk

const.−1
2 log |Σ|−1

2
{

(xi − µk)T Σ−1(xi − µk)
}
.

Therefore having Σ and µk, the ML-cluster analysis is given by

min
S1,...,Sg

g∑
k=1

∑
i∈Sk

log |Σ|+
{

(xi − µk)T Σ−1(xi − µk)
}
.

b) Given clustering of samples S1, . . . , Sg, the ML-estimation of Σ results from the min-
imization of above expression for fixed S1, . . . , Sg. Following similar argument from



ML estimation of covariance matrix, µk are estimated by xk. Using these values and
differentiating with respect to Σ−1, similar to ML-estimation of covariance matrix, the
ML-estimation of Σ is given by:

nΣ̂ =
g∑

k=1

∑
i∈Sk

{
(xi − xk)(xi − xk)T

}
=⇒ Σ̂ = 1

n
W,

where W is within-group sum of squares.

c) Using the above estimation, ML-estimation can be written as

min
S1,...,Sg

g∑
k=1

∑
i∈Sk

log |W
n
|+

{
(xi − xk)T W−1n(xi − xk)

}
.

But:
g∑

k=1

∑
i∈Sk

(xi−xk)T W−1n(xi−xk) =
g∑

k=1

∑
i∈Sk

tr(W−1(xi−xk)(xi−xk)T ) = tr(W−1W) = p.

Therefore the ML-estimation can be written as:

min
S1,...,Sg

det(W).

d) If Σ is known, ML-cluster analysis is written as:

min
S1,...,Sg

g∑
k=1

∑
i∈Sk

log |Σ|+
{

(xi − xk)T Σ−1(xi − xk)
}
.

Since Σ is known and irrelevant for the optimization, only the second term is important.
Now see that from the argument used above:

g∑
k=1

∑
i∈Sk

(xi − xk)T Σ−1(xi − xk) = tr(WΣ−1).

Therefore the ML-analysis writes as:

min
S1,...,Sg

tr(WΣ−1).


