Prof. Dr. Rudolf Mathar, Dr. Gholamreza Alirezaei, Dr. Arash Behboodi

Exercise 9
 - Proposed Solution -

Friday, January 20, 2017

Solution of Problem 1

a) (2-Classes) For the dataset with two classes, Figure 1 presents the results of K-means clustering algorithm.

K-Means Clustering

Figure 1: Dataset with two classes
b) (3-Classes) For the dataset with three classes, Figure 2 presents the results of K-means clustering algorithm.

K-Means Clustering

Figure 2: Dataset with three classes

Solution of Problem 2

a) (2-Classes) For the dataset with two classes, Figure 1 presents the results of K-means clustering algorithm. Note that the circled points are wrongly clustered points compared to the original labels.
b) (3-Classes) For the dataset with three classes, Figure 2 presents the results of K-means clustering algorithm. Note that the circled points are wrongly clustered points compared to the original labels.

Figure 3: Dataset with two classes

Solution of Problem 3

a) The first step is to formulate the Lagrangian function:

$$
\Lambda(\mathbf{x}, \boldsymbol{\lambda})=\mathbf{c}^{T} \mathbf{x}+\boldsymbol{\lambda}^{T}(\mathbf{A} \mathbf{x}-\mathbf{b})=\left(\mathbf{c}+\mathbf{A}^{T} \boldsymbol{\lambda}\right)^{T} \mathbf{x}-\boldsymbol{\lambda}^{T} \mathbf{b}
$$

$\boldsymbol{\lambda}$ is Lagrange multiplier. Next step is to find Lagrange dual function:

$$
g(\boldsymbol{\lambda})=\inf _{\mathbf{x} \in \mathbb{R}^{n}} \Lambda(\mathbf{x}, \boldsymbol{\lambda})= \begin{cases}-\boldsymbol{\lambda}^{T} \mathbf{b} & \mathbf{c}+\mathbf{A}^{T} \boldsymbol{\lambda}=0 \\ -\infty & \text { otherwise }\end{cases}
$$

Therefore the dual problem can be written as:

$$
\begin{aligned}
\max & -\mathbf{b}^{T} \lambda \\
\text { s.t. } & \mathbf{A}^{T} \boldsymbol{\lambda}+\mathbf{c}=0 \\
& \boldsymbol{\lambda} \succeq 0
\end{aligned}
$$

b) Again, the first step is to formulate the Lagrangian function:

$$
\Lambda(\mathbf{x}, \boldsymbol{\lambda})=\mathbf{x}^{T} \mathbf{B} \mathbf{x}+\boldsymbol{\lambda}^{T}(\mathbf{A x}-\mathbf{b})
$$

Figure 4: Dataset with three classes

Next step is to find Lagrange dual function:

$$
g(\boldsymbol{\lambda})=\inf _{\mathbf{x} \in \mathbb{R}^{n}} \Lambda(\mathbf{x}, \boldsymbol{\lambda})
$$

Using derivation with repsect to \mathbf{x}, we have:

$$
\frac{\partial}{\partial \mathbf{x}} \Lambda(\mathbf{x}, \boldsymbol{\lambda})=2 \mathbf{B} x+\mathbf{A}^{T} \boldsymbol{\lambda} \Longrightarrow \mathbf{x}=-\frac{1}{2} \mathbf{B}^{-1} \mathbf{A}^{T} \boldsymbol{\lambda}
$$

Having this solution (verify that it is the minimum point indeed), the Lagrange dual function is given by:

$$
g(\boldsymbol{\lambda})=\frac{1}{4} \boldsymbol{\lambda}^{T} \mathbf{A} \mathbf{B}^{-1} \mathbf{A}^{T} \boldsymbol{\lambda}+\boldsymbol{\lambda}^{T}\left(-\frac{1}{2} \mathbf{A} \mathbf{B}^{-1} \mathbf{A}^{T} \boldsymbol{\lambda}-\mathbf{b}\right)=-\frac{1}{4} \boldsymbol{\lambda}^{T} \mathbf{A} \mathbf{B}^{-1} \mathbf{A}^{T} \boldsymbol{\lambda}-\boldsymbol{\lambda}^{T} \mathbf{b}
$$

Therefore the dual problem can be written as:

$$
\begin{aligned}
\max & -\frac{1}{4} \boldsymbol{\lambda}^{T} \mathbf{A} \mathbf{B}^{-1} \mathbf{A}^{T} \boldsymbol{\lambda}-\boldsymbol{\lambda}^{T} \mathbf{b} \\
\text { s.t. } & \boldsymbol{\lambda} \succeq 0
\end{aligned}
$$

c) Again, the first step is to formulate the Lagrangian function:

$$
\Lambda(\mathbf{x}, \boldsymbol{\nu})=\|\mathbf{x}\|_{p}+\boldsymbol{\nu}^{T}(\mathbf{A} \mathbf{x}-\mathbf{b})
$$

Next step is to find Lagrange dual function:

$$
g(\boldsymbol{\nu})=\inf _{\mathbf{x} \in \mathbb{R}^{n}} \Lambda(\mathbf{x}, \boldsymbol{\nu})
$$

A related optimization problem can be written as:

$$
\inf _{\mathbf{x}}\|\mathbf{x}\|_{p}+\mathbf{a}^{T} \mathbf{x}
$$

Consider the Hölder's inequality:

$$
\|\mathbf{x}\|_{p}\|\mathbf{a}\|_{q} \geq\left|\mathbf{a}^{T} \mathbf{x}\right| \geq-\mathbf{a}^{T} \mathbf{x}
$$

if $\frac{1}{p}+\frac{1}{q}=1$. Note that if $\|\mathbf{a}\|_{q} \leq 1$, then $\|\mathbf{x}\|_{p}+\mathbf{a}^{T} \mathbf{x} \geq 0$ and therefore $\inf _{\mathbf{x}}\|\mathbf{x}\|_{p}+\mathbf{a}^{T} \mathbf{x}=$ 0 .

Now suppose that $\|\mathbf{a}\|_{q}>1$. See that if $\mathbf{x}=-t\left(\left.a_{1}\left|a_{1}\right|\right|^{q-2}, \ldots, a_{n}\left|a_{n}\right|^{q-2}\right)$ for some $t>0$, then we have:

$$
\|\mathbf{x}\|_{p}+\mathbf{a}^{T} \mathbf{x}=t\|\mathbf{a}\|_{q}^{q-1}-t\|\mathbf{a}\|_{q}^{q}=t\left(\|\mathbf{a}\|_{q}^{q-1}-\|\mathbf{a}\|_{q}^{q}\right)
$$

Since $\|\mathbf{a}\|_{q}>1$, the above expression is strictly negative and can be arbitrarily small when $t \rightarrow \infty$.
Applying the above result, the Lagrange dual function is given by:

$$
g(\boldsymbol{\nu})=\inf _{\mathbf{x} \in \mathbb{R}^{n}} \Lambda(\mathbf{x}, \boldsymbol{\nu})= \begin{cases}-\boldsymbol{\nu}^{T} \mathbf{b} & \left\|\mathbf{A}^{T} \boldsymbol{\nu}\right\|_{q} \leq 1 \\ -\infty & \text { otherwise }\end{cases}
$$

Therefore the dual problem can be written as:

$$
\begin{aligned}
\max & -\boldsymbol{\nu}^{T} \mathbf{b} \\
\text { s.t. } & \left\|\mathbf{A}^{T} \boldsymbol{\nu}\right\|_{q} \leq 1
\end{aligned}
$$

