Prof. Dr. Rudolf Mathar, Dr. Gholamreza Alirezaei, Dr. Arash Behboodi
Exercise 12

- Proposed Solution -

Friday, February 10, 2017

Solution of Problem 1

Let \mathbf{X} be a matrix in $\mathbb{R}^{m \times n}$ such that $\left(\mathbf{X}^{T} \mathbf{X}\right)$ is invertible. To show that the matrix $\mathbf{P}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}$ is a projection matrix, we have to show $\mathbf{P}^{2}=\mathbf{P}$ and \mathbf{P} is symmetric. First see that:

$$
\mathbf{P}^{2}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}=\mathbf{P}
$$

For proving that P is symmetric, see that:

$$
\mathbf{P}^{T}=\left(\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}\right)^{T}=\left(\mathbf{X}^{T}\right)^{T}\left(\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right)^{T} \mathbf{X}^{T}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}=\mathbf{P}
$$

So \mathbf{P} is a projection matrix. It remain to show that \mathbf{P} is the projection matrix onto the image of \mathbf{X}. Suppose that $\mathbf{b} \in \mathbb{R}^{n}$ belongs to the image of \mathbf{X}, therefore there is $\mathbf{a} \in \mathbb{R}^{m}$ such that $\mathbf{b}=\mathbf{X a}$. We have:

$$
\mathbf{P b}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}(\mathbf{X}) \mathbf{a}=\mathbf{X} \mathbf{a}=\mathbf{b} .
$$

In other words every vector in the image of \mathbf{X} is projected onto itself. Now note that the image of \mathbf{P} is a subset of the image of \mathbf{X}. Therefore $\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}$ is the projection matrix onto the image of \mathbf{X}.

Solution of Problem 2

a) Let \mathbf{B} and \mathbf{C} be Moore-Penrose pseudoinverses of \mathbf{A}. First of all see that

$$
(\mathbf{B A})^{T}=\mathbf{B A} \Longrightarrow(\mathbf{B A})^{T}=(\mathbf{B A C A})^{T}=(\mathbf{C A})^{T}(\mathbf{B A})^{T}=\mathbf{C A B A}=\mathbf{C A} .
$$

On the other hand, we have:

$$
(\mathbf{A B})^{T}=\mathbf{A B} \Longrightarrow(\mathbf{A B})^{T}=(\mathbf{A C A B})^{T}=(\mathbf{A B})^{T}(\mathbf{A C})^{T}=\mathbf{A B A C}=\mathbf{A C} .
$$

Therefore $\mathbf{C A}=\mathbf{B A}$ and $\mathbf{A B}=\mathbf{A C}$. So we have:

$$
\mathrm{B}(\mathrm{AC})=\mathrm{B}(\mathrm{AB})=\mathrm{B}
$$

and

$$
(\mathbf{B A}) \mathbf{C}=(\mathbf{C A}) \mathbf{C}=\mathbf{C},
$$

which implies that $\mathbf{B}=\mathbf{C}$.
b) Suppose that $\operatorname{rk}(\mathbf{A})=m$. Note that $\mathbf{A} \mathbf{A}^{T} \in \mathbb{R}^{m \times m}$ and hence $\operatorname{rk}\left(\mathbf{A} \mathbf{A}^{T}\right) \leq m$. On the other hand, $\operatorname{rk}\left(\mathbf{A} \mathbf{A}^{T}\right)=\operatorname{rk}(\mathbf{A})=m$. Therefore $\mathbf{A} \mathbf{A}^{T}$ is full rank and invertible.
Now that $\mathbf{A} \mathbf{A}^{T}$ is invertible, it is enough to check the conditions of Moore-Penrose inverse:

$$
\begin{gathered}
\mathbf{A} \mathbf{A}^{+} \mathbf{A}=\left(\mathbf{A} \mathbf{A}^{T}\right)\left(\mathbf{A} \mathbf{A}^{T}\right)^{-1} \mathbf{A}=\mathbf{A} \\
\mathbf{A}^{+} \mathbf{A} \mathbf{A}^{+}=\mathbf{A}^{T}\left(\mathbf{A} \mathbf{A}^{T}\right)^{-1}\left(\mathbf{A} \mathbf{A}^{T}\right)\left(\mathbf{A} \mathbf{A}^{T}\right)^{-1}=\mathbf{A}^{T}\left(\mathbf{A} \mathbf{A}^{T}\right)^{-1} \\
\\
\left(\mathbf{A} \mathbf{A}^{+}\right)^{T}=\left(\mathbf{A} \mathbf{A}^{T}\left(\mathbf{A} \mathbf{A}^{T}\right)^{-1}\right)^{T}=\mathbf{I} \\
\left(\mathbf{A}^{+} \mathbf{A}\right)^{T}=\left(\mathbf{A}^{T}\left(\mathbf{A} \mathbf{A}^{T}\right)^{-1} \mathbf{A}\right)^{T}=\mathbf{A}^{T}\left(\left(\mathbf{A} \mathbf{A}^{T}\right)^{-1}\right)^{T} \mathbf{A}=\mathbf{A}^{+} \mathbf{A} .
\end{gathered}
$$

c) If $\operatorname{rk}(\mathbf{A})=n$, then $\operatorname{rk}\left(\mathbf{A}^{T} \mathbf{A}\right)=n$ and since $\mathbf{A}^{T} \mathbf{A} \in \mathbb{R}^{n \times n}$, the matrix is full rank and invertible. Now that $\left(\mathbf{A}^{T} \mathbf{A}\right)$ is invertible, similar to the previous exercise it can be shown that $\mathbf{A}^{+}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T}$ satisfies Moore-Penrose condition.
d) We check all the conditions step by step:

$$
\mathbf{A B A}=\mathbf{U D V}^{T} \mathbf{V D}^{+} \mathbf{U}^{T} \mathbf{U D V}^{T}=\mathbf{U D D}^{+} \mathbf{D V}^{T}=\mathbf{U D V}^{T}=\mathbf{A}
$$

where we used $\mathbf{V} \mathbf{V}^{T}=\mathbf{I}$ and $\mathbf{U}^{T} \mathbf{U}=I$ and also:

$$
\mathbf{D D}^{+}=\left[\begin{array}{ll}
\mathbf{S} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{S}^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]^{T}=\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]=\operatorname{diag}(\mathbf{I}, \mathbf{0})
$$

In a similar fashion, we have:

$$
\mathbf{B A B}=\mathbf{V D}^{+} \mathbf{U}^{T} \mathbf{U D V}^{T} \mathbf{V D}^{+} \mathbf{U}^{T}=\mathbf{V D}^{+} \mathbf{D D}^{+} \mathbf{U}^{T}=\mathbf{V D}^{+} \mathbf{U}^{T}=\mathbf{B} .
$$

Next step is to show that $\mathbf{B A}$ and $\mathbf{A B}$ are symmteric. Note that:

$$
\begin{aligned}
& \mathbf{B A}=\mathbf{V D}^{+} \mathbf{U}^{T} \mathbf{U D V}^{T}=\mathbf{V D}^{+} \mathbf{D} \mathbf{V}^{T}=\mathbf{V} \operatorname{diag}(\mathbf{I}, \mathbf{0}) \mathbf{V}^{T} \\
& \mathbf{A B}=\mathbf{U D V}^{T} \mathbf{V D}^{+} \mathbf{U}^{T}=\mathbf{U D D}^{+} \mathbf{U}^{T}=\mathbf{U} \operatorname{diag}(\mathbf{I}, \mathbf{0}) \mathbf{U}^{T}
\end{aligned}
$$

Their symmetry is obvious from their structure.

Solution of Problem 3

Note that the regression problem should be written as

$$
y_{i}=\left[\begin{array}{ll}
1 & x_{i}
\end{array}\right]\left[\begin{array}{l}
\vartheta_{0} \\
\vartheta_{1}
\end{array}\right]
$$

and for all n samples of $\left(x_{i}, y_{i}\right)$, we have the following definition :

$$
\mathbf{y}=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right]\left[\begin{array}{c}
\vartheta_{0} \\
\vartheta_{1}
\end{array}\right]
$$

See that firstly:

$$
\begin{gathered}
\mathbf{X}=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right] \\
\mathbf{X}^{T} \mathbf{X}=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right]\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right]=\left[\begin{array}{cc}
n & \sum x_{i} \\
\sum x_{i} & \sum x_{i}^{2}
\end{array}\right] \\
\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}=\frac{1}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}\left[\begin{array}{cc}
\sum x_{i}^{2} & -\sum x_{i} \\
-\sum x_{i} & n
\end{array}\right]=\frac{1}{n} \frac{1}{\overline{x^{2}}-\bar{x}^{2}}\left[\begin{array}{cc}
\overline{x^{2}} & -\bar{x} \\
-\bar{x} & 1
\end{array}\right]
\end{gathered}
$$

On the other hand we have:

$$
\mathbf{X}^{T} \mathbf{y}=\left[\begin{array}{c}
n \bar{y} \\
\sum x_{i} y_{i}
\end{array}\right]
$$

So finally the solution is given by:

$$
\begin{aligned}
\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y} & =\frac{1}{n} \frac{1}{\overline{x^{2}}-\bar{x}^{2}}\left[\begin{array}{cc}
\overline{x^{2}} & -\bar{x} \\
-\bar{x} & 1
\end{array}\right]\left[\begin{array}{c}
n \bar{y} \\
\sum x_{i} y_{i}
\end{array}\right]=\frac{1}{n} \frac{1}{\overline{x^{2}}-\bar{x}^{2}}\left[\begin{array}{c}
n \bar{y} \overline{x^{2}}-\bar{x}\left(\sum x_{i} y_{i}\right) \\
-n \bar{y} \cdot \bar{x}+\sum x_{i} y_{i}
\end{array}\right] \\
& =\frac{1}{\overline{x^{2}}-\bar{x}^{2}}\left[\begin{array}{c}
\bar{y} \overline{x^{2}}-\bar{x} \rho_{x y} \\
-\bar{y} \cdot \bar{x}+\rho_{x y}
\end{array}\right]=\frac{1}{\sigma_{x}^{2}}\left[\begin{array}{c}
\bar{y} \overline{x^{2}}-\bar{x} \rho_{x y} \\
\sigma_{x y}
\end{array}\right]
\end{aligned}
$$

Therefore $\vartheta_{1}=\frac{\sigma_{x y}}{\sigma_{x}^{2}}$ and

$$
\vartheta_{0}=\frac{1}{\sigma_{x}^{2}}\left(\bar{y} \overline{x^{2}}-\bar{x} \rho_{x y}\right)=\frac{1}{\sigma_{x}^{2}}\left(\bar{y} \overline{x^{2}}-\bar{x}\left(\bar{y} \cdot \bar{x}+\sigma_{x y}\right)\right)=\frac{1}{\sigma_{x}^{2}}\left(\bar{y}\left(\overline{x^{2}}-\bar{x}^{2}\right)\right)-\bar{x} \frac{\sigma_{x y}}{\sigma_{x}^{2}}
$$

hence $\vartheta_{0}=\bar{y}-\vartheta_{1} \bar{x}$.

