Univ.-Prof. Dr. rer. nat. Rudolf Mathar

1	2	3	4	5	6	7	8	\sum
$\boxed{13}$	$\boxed{12}$	$\boxed{14}$	$\boxed{15}$	$\boxed{15}$	$\boxed{13}$	$\boxed{12}$	$\boxed{6}$	$\boxed{100}$

Written Examination
 Fundamentals of Big Data Analytics

Monday, March 12, 2018, 02:00 p.m.

Name: \qquad Matr.-No.: \qquad
Field of study: \qquad

Please pay attention to the following:

1) The exam consists of 8 problems. Please check the completeness of your copy. Only written solutions on these sheets will be considered. Removing the staples is not allowed.
2) The exam is passed with at least $\mathbf{5 0}$ points.
3) You are free in choosing the order of working on the problems. Your solution shall clearly show the approach and intermediate arguments.
4) Admitted materials: The sheets handed out with the exam and a non-programmable calculator.
5) The results will be published on Friday evening, the 16.03 .18 , on the homepage of the institute.

The corrected exams can be inspected on Friday, 23.03.18, 10:00h. at the seminar room 333 of the Chair for Theoretical Information Technology, Kopernikusstr. 16.

Problem 1. (13 points)

Maximum Likelihood Estimator:

The Burr Distribution is commonly used to model household income. Its cumulative distribution function is given by

$$
F(x \mid \theta)=\left\{\begin{array}{cl}
0, & x<0 \\
1-\frac{1}{\left(1+x^{2}\right)^{1 / \theta}}, & x \geq 0
\end{array}\right.
$$

where $\theta>0$. Assume i.i.d. samples $\mathbf{X}=X_{1}, X_{2}, \ldots, X_{n}$ are taken from the Burr distribution, and let $\mathbf{X}=\left[X_{1}, X_{2}, \ldots, X_{n}\right]^{\mathrm{T}}$.
a) Find the probability density function of the Burr distribution. (2P)
b) Find the \log likelihood function $\ell(\mathbf{X} ; \theta)$ of \mathbf{X}. (4P)
c) Find the maximum likelihood estimator (MLE) $\hat{\theta}$ of θ based on \mathbf{X}. (4P)
d) Is the above MLE estimator unbiased? Justify your answer.

Hint: Use without verifying that for all $X_{i}, \mathbb{E}\left[\frac{\mathrm{~d}}{\mathrm{~d} \theta} \ln f\left(X_{i} \mid \theta\right)\right]=0$. (2P)

Problem 2. (12 points)
Principal Component Analysis (PCA):
a) Let \mathbf{A} be a symmetric $n \times n$ matrix. Show that there exists a real $t>0$, large enough such that $\mathbf{A}+t \mathbf{I}$ is positive definite. What is the minimum value of t ? (4P)

Assume that \mathbf{A} is given by:

$$
\mathbf{A}=\left(\begin{array}{l}
2 \\
2 \\
0
\end{array}\right)\left(\begin{array}{lll}
2 & 2 & 0
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)\left(\begin{array}{lll}
1 & -1 & 0
\end{array}\right)+\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right)
$$

b) What is the rank of \mathbf{A} ? (1P)
c) Calculate the spectral decomposition $\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}$ of \mathbf{A} by determining the matrices \mathbf{V} and ^. (4P)
d) Assume that $\frac{1}{3} \mathbf{A}$ is a sample covariance matrix. Determine the projection matrix \mathbf{Q} for PCA to transform three-dimensional samples to two dimensions. (2P)
e) Determine the projection error $\frac{1}{n-1} \max _{\mathbf{Q}} \sum_{i=1}^{n}\left\|\mathbf{Q} \mathbf{x}_{i}-\mathbf{Q} \overline{\mathbf{x}}_{n}\right\|^{2}$ for the above choice of \mathbf{Q}. (2P)

Problem 3. (14 points)

Diffusion Map:

The dataset shown in Figure 1 is composed of 8 points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{8} \in \mathbb{R}^{2}$.

Figure 1: Data Points
The following matrix $\boldsymbol{\Delta} \in \mathbb{R}^{8 \times 8}$ is the Euclidean distance matrix for these points.

$$
\boldsymbol{\Delta}=\left(\begin{array}{llllllll}
0.0 & 0.2 & 0.9 & 1.4 & 1.6 & 1.6 & 1.4 & 0.9 \\
0.2 & 0.0 & 0.4 & 0.9 & 1.6 & 2.2 & 2.3 & 2.0 \\
0.9 & 0.4 & 0.0 & 0.2 & 0.8 & 1.7 & 2.5 & 2.9 \\
1.4 & 0.9 & 0.2 & 0.0 & 0.3 & 1.0 & 2.0 & 2.9 \\
1.6 & 1.6 & 0.8 & 0.3 & 0.0 & 0.3 & 1.1 & 2.2 \\
1.6 & 2.2 & 1.7 & 1.0 & 0.3 & 0.0 & 0.3 & 1.2 \\
1.4 & 2.3 & 2.5 & 2.0 & 1.1 & 0.3 & 0.0 & 0.4 \\
0.9 & 2.0 & 2.9 & 2.9 & 2.2 & 1.2 & 0.4 & 0.0
\end{array}\right)
$$

Assume that we want to construct a diffusion map using the following kernel function:

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)= \begin{cases}\exp \left(-5\left\|\mathbf{x}_{j}-\mathbf{x}_{i}\right\|_{2}^{2}\right), & \left\|\mathbf{x}_{j}-\mathbf{x}_{i}\right\|_{2} \leq 0.8 \\ 0, & \text { otherwise }\end{cases}
$$

Using this kernel function calculate
a) the weight matrix \mathbf{W} for the difussion map, (4P)
b) the first 2 rows of the transition matrix \mathbf{M} for the difussion map. (3P)

The spectral decomposition of $\mathbf{S}=\mathbf{D}^{\frac{1}{2}} \mathbf{M} \mathbf{D}^{-\frac{1}{2}}$, with $\mathbf{D}=\operatorname{diag}(\operatorname{deg}(1), \ldots, \operatorname{deg}(8))$, is given by $\mathbf{S}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{T}$, where \mathbf{V} contains the eigenvectors, and $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{8}\right)$ the eigenvalues.
Suppose that

$$
\mathbf{D}^{-\frac{1}{2}} \mathbf{V}=\left(\begin{array}{cccccccc}
0.2 & 0.3 & 0.3 & -0.2 & -0.2 & -0.3 & 0.3 & 0.1 \\
0.2 & 0.3 & 0.2 & -0 . & 0.1 & 0.3 & -0.3 & -0.2 \\
0.2 & 0.2 & -0.2 & 0.3 & 0.3 & 0.2 & 0.2 & 0.3 \\
0.2 & 0.1 & -0.3 & 0.2 & -0.1 & -0.3 & -0 . & -0.4 \\
0.2 & -0.1 & -0.3 & -0.2 & -0.4 & 0.1 & -0.2 & 0.3 \\
0.2 & -0.2 & -0.1 & -0.3 & 0.1 & 0.2 & 0.3 & -0.2 \\
0.2 & -0.3 & 0.2 & -0.1 & 0.3 & -0.3 & -0.3 & 0.1 \\
0.2 & -0.4 & 0.4 & 0.4 & -0.3 & 0.2 & 0.1 & -0.1
\end{array}\right)
$$

and $\boldsymbol{\Lambda}=\operatorname{diag}([1.0,0.95,0.83,0.65,0.39,0.15,0.02,-0.1])$.
c) Calculate and draw the truncated difussion maps $\phi_{t}^{(2)}\left(\mathbf{x}_{i}\right)$ for $i=1, \ldots, 8$ and $t=0$. (5P)

d) Explain what happens to the truncated diffusion maps $\phi_{t}^{(2)}\left(\mathbf{x}_{i}\right)$ as $t \rightarrow \infty$. (2P)

Problem 4. (15 points)
Discriminant Analysis:
A training dataset consists of 4 vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{4} \in \mathbb{R}^{2}$ belonging to two classes C_{1} and C_{2}. The vectors are given by

$$
\mathbf{x}_{1}=\binom{-1}{1}, \quad \mathbf{x}_{2}=\binom{-1}{0}, \quad \mathbf{x}_{3}=\binom{0}{1}, \quad \text { and } \quad \mathbf{x}_{4}=\binom{1}{-1} .
$$

Suppose that $\mathbf{x}_{1}, \mathbf{x}_{2}$ and \mathbf{x}_{3} belong to C_{1}, and \mathbf{x}_{4} belongs to C_{2} as shown in Figure 2 .

Figure 2: Data Points
The discriminant vector $\mathbf{a} \in \mathbb{R}^{2}$ is given as $\mathbf{a}=\frac{1}{\sqrt{2}}(-1,1)^{T}$.
a) The separating hyperplane has the form $\mathbf{a}^{T} \mathbf{x}-b=0$. Calculate the value of $b \in \mathbb{R}$ and draw the separating hyperplane on Figure 2 . (4P)
b) Calculate the sum of squares between groups. (3P)
c) Calculate the sum of squares within groups. (4P)

Assume that $\tilde{\mathbf{x}}_{4} \in \mathbb{R}^{2}$ is a noisy version of \mathbf{x}_{4} such that

$$
\tilde{\mathbf{x}}_{4}=\mathbf{x}_{4}+\epsilon \boldsymbol{\eta},
$$

where $\boldsymbol{\eta} \in \mathbb{R}^{2}$ is a vector with $\|\boldsymbol{\eta}\|_{2}=1$ and $\epsilon>0$.
d) Find the minimum ϵ such that $\tilde{\mathbf{x}}_{4}$ gets allocated to C_{1} by the discriminant rule. (4P)

Problem 5. (15 points)

Support Vector Machines:

A training dataset is composed of six vectors \mathbf{x}_{i} in $\mathbb{R}^{2}, i=1, \ldots, 6$, belonging to two classes. The class membership is indicated by the labels $y_{i} \in\{-1,+1\}$. A kernel-based support vector machine is used to find the maximum-margin hyperplane by solving the following dual problem:

$$
\begin{aligned}
\max _{\lambda} & \sum_{i=1}^{6} \lambda_{i}-\frac{1}{2} \sum_{i=1}^{6} \sum_{j=1}^{6} y_{i} y_{j} \lambda_{i} \lambda_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \\
\text { s.t. } & 0 \leq \lambda_{i} \leq 2 \quad \text { and } \quad \sum_{i=1}^{6} \lambda_{i} y_{i}=0 .
\end{aligned}
$$

The kernel function is given by:

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\exp \left(-\gamma\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}^{2}\right)
$$

The value of γ is chosen as 0.6 .

The dataset and the outputs of the optimization problem are given in the following table.

Data	Label	Solution	Data	Label	Solution
$\mathbf{x}_{1}=\binom{1}{1}$	$y_{1}=-1$	$\lambda_{1}^{\star}=2$	$\mathbf{x}_{4}=\binom{-1}{0}$	$y_{4}=1$	$\lambda_{4}^{\star}=2$
$\mathbf{x}_{2}=\binom{-2}{-1}$	$y_{2}=-1$	$\lambda_{2}^{\star}=0.74$	$\mathbf{x}_{5}=\binom{-2}{1}$	$y_{5}=1$	$\lambda_{5}^{\star}=0.5$
$\mathbf{x}_{3}=\binom{-1}{-1}$	$y_{3}=-1$	$\lambda_{3}^{\star}=1.76$	$\mathbf{x}_{6}=\binom{1}{2}$	$y_{6}=1$	$\lambda_{6}^{\star}=2$

a) Determine the support vectors. (6P)
b) Determine the kernel-based classifier by specifying all the parameters. (6P)

Hint: Round the numbers to the nearest thousandth, e.g., $0.0014 \approx 0.001$ or $0.0016 \approx$ 0.002 or $0.0015 \approx 0.002$.
c) Suppose that γ is very large so that the kernel function can be approximated by

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left\{\begin{array}{ll}
1 & \mathbf{x}_{i}=\mathbf{x}_{j} \\
0 & \text { otherwise }
\end{array} .\right.
$$

Determine the support vectors for this problem. (3P)

Problem 6. (13 points)
Kernels for SVM:
a) Determine the following kernel functions are valid kernels for support vector machines and explain the reason. (6P)
a) $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=1$ for all $\mathbf{x}_{i}, \mathbf{x}_{j} \in \mathbb{R}^{p}$.
b) $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\max _{k \in\{1, \ldots, p\}}\left(x_{i}(k)-x_{j}(k)\right)$ for $\mathbf{x}_{i}=\left(x_{i}(1), \ldots, x_{i}(p)\right)^{T}$ and $\mathbf{x}_{j}=\left(x_{j}(1), \ldots, x_{j}(p)\right)^{T}$.
c) $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left|\left\|\mathbf{x}_{i}\right\|_{2}^{2}-\left\|\mathbf{x}_{j}\right\|_{2}^{2}\right|$ for all $\mathbf{x}_{i}, \mathbf{x}_{j} \in \mathbb{R}^{p}$.
b) Suppose that a kernel is given by $K(\mathbf{x}, \mathbf{y})=4\left(\mathbf{x}^{T} \mathbf{y}\right)^{2}+3\left(\mathbf{x}^{T} \mathbf{y}\right)+1$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}$. Find the feature function for this kernel. Determine the dimension of the feature space. (7P)

Problem 7. (12 points)
Clustering:
Part I
The set $\Phi=\left\{\mathbf{x}_{i} \mid i=1, \ldots, 6\right\} \subset \mathbb{R}^{2}$, with

$$
\mathbf{x}_{1}=\binom{3}{5}, \mathbf{x}_{2}=\binom{1}{4}, \mathbf{x}_{3}=\binom{0}{0}, \mathbf{x}_{4}=\binom{1}{-1}, \mathbf{x}_{5}=\binom{-2}{-2}, \mathbf{x}_{6}=\binom{-1}{-4} .
$$

a) The k-means clustering algorithm is used to partition Φ into two clusters: C_{1} and C_{2}. At a certain iteration, \mathbf{x}_{1} and \mathbf{x}_{5} are the center of C_{1} and C_{2}, respectively. Assign each sample in Φ to the appropriate clusters. Suppose the Euclidian distance is used for the assignment. (4P)
b) Determine the centers of the two clusters according to the update in a). (2P)

Part II

The table below shows the pairwise dissimilarities between four points in a dataset Γ, where $\Gamma=\left\{\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}, \mathrm{P}_{5}\right\}$.

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}
P_{1}	0	0.9	0.8	0.3	0.4
P_{2}	0.9	0	0.5	0.2	0.1
P_{3}	0.8	0.5	0	0.6	0.2
P_{4}	0.3	0.2	0.6	0	0.7
P_{5}	0.4	0.1	0.2	0.7	0

Use the agglomerative clustering algorithm to partition Γ into two clusters: C_{1} and C_{2}. For this assignment, use the average linkage distance between C_{1} and C_{2}, which is given by

$$
d\left(C_{1}, C_{2}\right)=\frac{1}{\left|C_{1}\right|\left|C_{2}\right|} \sum_{i \in C_{1}, j \in C_{2}} \delta_{i, j},
$$

where $|$.$| denotes the cardinality, and \delta_{i, j}$ is the dissimilarity between points i and j. (6P)

Problem 8. (6 points)
Regression:
Assume the signal-to-noise ratio (SNR) in dB at a certain receiver is indicated by the variable $x \in \mathbb{R}$. The receiver should have a bit error rate (BER) below a certain threshold, so that the message is decodable. The variable $y \in\{0,1\}$ models this information; $y=0$ indicates a decodable message, and $y=1$ indicates a non-decodable message. Assume logistic regression is used to model y as a function of x.
a) At a given iteration, $\nu=\left(\nu_{0}, \nu_{1}\right)$ denotes the estimated coefficients of the model, which are given by $\left(\nu_{0}, \nu_{1}\right)=(-0.05,0.08)$. Assume the sigmoid function is used as a non-linear function in logistic regression. Estimate the probability that a message is decodable at $x=10 \mathrm{~dB} .(4 \mathrm{P})$
b) Repeat a) using the following activation function (2P)

$$
f(x)=\log _{10}(1+\exp (x)) .
$$

Additional sheet
Problem:

