

Univ.-Prof. Dr. rer. nat. Rudolf Mathar

1	2	3	4	5	6	7	8	Σ
13	12	14	15	15	13	12	6	100

Written Examination

Fundamentals of Big Data Analytics

Monday, March 12, 2018, 02:00 p.m. $\,$

Name: _

_____ Matr.-No.: ____

Field of study: _____

Please pay attention to the following:

- 1) The exam consists of **8 problems**. Please check the completeness of your copy. **Only** written solutions on these sheets will be considered. Removing the staples is **not** allowed.
- 2) The exam is passed with at least 50 points.
- **3)** You are free in choosing the order of working on the problems. Your solution shall clearly show the approach and intermediate arguments.
- 4) Admitted materials: The sheets handed out with the exam and a non-programmable calculator.
- 5) The results will be published on Friday evening, the 16.03.18, on the homepage of the institute.

The corrected exams can be inspected on Friday, 23.03.18, 10:00h. at the seminar room 333 of the Chair for Theoretical Information Technology, Kopernikusstr. 16.

Acknowledged:

(Signature)

Problem 1. (13 points) Maximum Likelihood Estimator:

The Burr Distribution is commonly used to model household income. Its cumulative distribution function is given by

$$F(x|\theta) = \begin{cases} 0, & x < 0\\ 1 - \frac{1}{(1+x^2)^{1/\theta}}, & x \ge 0 \end{cases}$$

where $\theta > 0$. Assume i.i.d. samples $\mathbf{X} = X_1, X_2, \ldots, X_n$ are taken from the Burr distribution, and let $\mathbf{X} = [X_1, X_2, \ldots, X_n]^{\mathrm{T}}$.

- a) Find the probability density function of the Burr distribution. (2P)
- **b)** Find the log likelihood function $\ell(\mathbf{X}; \theta)$ of **X**. (4P)
- c) Find the maximum likelihood estimator (MLE) $\hat{\theta}$ of θ based on X. (4P)
- d) Is the above MLE estimator unbiased? Justify your answer. **Hint:** Use without verifying that for all X_i , $\mathbb{E}\left[\frac{\mathrm{d}}{\mathrm{d}\theta} \ln f(X_i|\theta)\right] = 0.$ (2P)

Problem 2. (12 points) **Principal Component Analysis (PCA):**

a) Let A be a symmetric $n \times n$ matrix. Show that there exists a real t > 0, large enough such that $\mathbf{A} + t\mathbf{I}$ is positive definite. What is the minimum value of t? (4P)

Assume that **A** is given by:

$$\mathbf{A} = \begin{pmatrix} 2\\ 2\\ 0 \end{pmatrix} \begin{pmatrix} 2 & 2 & 0 \end{pmatrix} + \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \end{pmatrix} + \begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$$

- **b)** What is the rank of \mathbf{A} ? (1P)
- c) Calculate the spectral decomposition $\mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$ of \mathbf{A} by determining the matrices \mathbf{V} and $\mathbf{\Lambda}$. (4P)
- d) Assume that $\frac{1}{3}\mathbf{A}$ is a sample covariance matrix. Determine the projection matrix \mathbf{Q} for PCA to transform three-dimensional samples to two dimensions. (2P)
- e) Determine the projection error $\frac{1}{n-1} \max_{\mathbf{Q}} \sum_{i=1}^{n} ||\mathbf{Q}\mathbf{x}_{i} \mathbf{Q}\bar{\mathbf{x}}_{n}||^{2}$ for the above choice of **Q**. (2P)

Problem 3. (14 points) **Diffusion Map:**

The dataset shown in Figure 1 is composed of 8 points $\mathbf{x}_1, \ldots, \mathbf{x}_8 \in \mathbb{R}^2$.

Figure 1: Data Points

The following matrix $\Delta \in \mathbb{R}^{8 \times 8}$ is the Euclidean distance matrix for these points.

$$\boldsymbol{\Delta} = \begin{pmatrix} 0.0 & 0.2 & 0.9 & 1.4 & 1.6 & 1.6 & 1.4 & 0.9 \\ 0.2 & 0.0 & 0.4 & 0.9 & 1.6 & 2.2 & 2.3 & 2.0 \\ 0.9 & 0.4 & 0.0 & 0.2 & 0.8 & 1.7 & 2.5 & 2.9 \\ 1.4 & 0.9 & 0.2 & 0.0 & 0.3 & 1.0 & 2.0 & 2.9 \\ 1.6 & 1.6 & 0.8 & 0.3 & 0.0 & 0.3 & 1.1 & 2.2 \\ 1.6 & 2.2 & 1.7 & 1.0 & 0.3 & 0.0 & 0.3 & 1.2 \\ 1.4 & 2.3 & 2.5 & 2.0 & 1.1 & 0.3 & 0.0 & 0.4 \\ 0.9 & 2.0 & 2.9 & 2.9 & 2.2 & 1.2 & 0.4 & 0.0 \end{pmatrix}$$

Assume that we want to construct a diffusion map using the following kernel function:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \begin{cases} \exp(-5\|\mathbf{x}_j - \mathbf{x}_i\|_2^2), & \|\mathbf{x}_j - \mathbf{x}_i\|_2 \le 0.8, \\ 0, & \text{otherwise} \end{cases}$$

Using this kernel function calculate

- **a**) the weight matrix \mathbf{W} for the diffusion map, (4P)
- b) the first 2 rows of the transition matrix **M** for the diffusion map. (3P)

The spectral decomposition of $\mathbf{S} = \mathbf{D}^{\frac{1}{2}} \mathbf{M} \mathbf{D}^{-\frac{1}{2}}$, with $\mathbf{D} = \text{diag}(\text{deg}(1), \dots, \text{deg}(8))$, is given by $\mathbf{S} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$, where \mathbf{V} contains the eigenvectors, and $\mathbf{\Lambda} = \text{diag}(\lambda_1, \dots, \lambda_8)$ the eigenvalues. Suppose that

$$\mathbf{D}^{-\frac{1}{2}}\mathbf{V} = \begin{pmatrix} 0.2 & 0.3 & 0.3 & -0.2 & -0.2 & -0.3 & 0.3 & 0.1 \\ 0.2 & 0.3 & 0.2 & -0. & 0.1 & 0.3 & -0.3 & -0.2 \\ 0.2 & 0.2 & -0.2 & 0.3 & 0.3 & 0.2 & 0.2 & 0.3 \\ 0.2 & 0.1 & -0.3 & 0.2 & -0.1 & -0.3 & -0. & -0.4 \\ 0.2 & -0.1 & -0.3 & -0.2 & -0.4 & 0.1 & -0.2 & 0.3 \\ 0.2 & -0.2 & -0.1 & -0.3 & 0.1 & 0.2 & 0.3 & -0.2 \\ 0.2 & -0.3 & 0.2 & -0.1 & 0.3 & -0.3 & -0.3 & 0.1 \\ 0.2 & -0.4 & 0.4 & 0.4 & -0.3 & 0.2 & 0.1 & -0.1 \end{pmatrix}$$

and $\mathbf{\Lambda} = \text{diag}([1.0, 0.95, 0.83, 0.65, 0.39, 0.15, 0.02, -0.1]).$

c) Calculate and draw the truncated diffusion maps $\phi_t^{(2)}(\mathbf{x}_i)$ for $i = 1, \ldots, 8$ and t = 0. (5P)

d) Explain what happens to the truncated diffusion maps $\phi_t^{(2)}(\mathbf{x}_i)$ as $t \to \infty$. (2P)

Problem 4. (15 points) **Discriminant Analysis:**

A training dataset consists of 4 vectors $\mathbf{x}_1, \ldots, \mathbf{x}_4 \in \mathbb{R}^2$ belonging to two classes C_1 and C_2 . The vectors are given by

$$\mathbf{x}_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \quad \mathbf{x}_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \text{and} \quad \mathbf{x}_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Suppose that $\mathbf{x}_1, \mathbf{x}_2$ and \mathbf{x}_3 belong to C_1 , and \mathbf{x}_4 belongs to C_2 as shown in Figure 2.

Figure 2: Data Points

The discriminant vector $\mathbf{a} \in \mathbb{R}^2$ is given as $\mathbf{a} = \frac{1}{\sqrt{2}}(-1,1)^T$.

- a) The separating hyperplane has the form $\mathbf{a}^T \mathbf{x} b = 0$. Calculate the value of $b \in \mathbb{R}$ and draw the separating hyperplane on Figure 2. (4P)
- **b**) Calculate the sum of squares between groups. (3P)
- c) Calculate the sum of squares within groups. (4P)

Assume that $\tilde{\mathbf{x}}_4 \in \mathbb{R}^2$ is a noisy version of \mathbf{x}_4 such that

$$\tilde{\mathbf{x}}_4 = \mathbf{x}_4 + \epsilon \boldsymbol{\eta}_4$$

where $\boldsymbol{\eta} \in \mathbb{R}^2$ is a vector with $\|\boldsymbol{\eta}\|_2 = 1$ and $\epsilon > 0$.

d) Find the minimum ϵ such that $\tilde{\mathbf{x}}_4$ gets allocated to C_1 by the discriminant rule. (4P)

Problem 5. (15 points) **Support Vector Machines:**

A training dataset is composed of six vectors \mathbf{x}_i in \mathbb{R}^2 , $i = 1, \ldots, 6$, belonging to two classes. The class membership is indicated by the labels $y_i \in \{-1, +1\}$. A kernel-based support vector machine is used to find the maximum-margin hyperplane by solving the following dual problem:

$$\max_{\boldsymbol{\lambda}} \quad \sum_{i=1}^{6} \lambda_i - \frac{1}{2} \sum_{i=1}^{6} \sum_{j=1}^{6} y_i y_j \lambda_i \lambda_j K(\mathbf{x}_i, \mathbf{x}_j)$$

s.t. $0 \le \lambda_i \le 2$ and $\sum_{i=1}^{6} \lambda_i y_i = 0.$

The kernel function is given by:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|_2^2).$$

The value of γ is chosen as 0.6.

The dataset and the outputs of the optimization problem are given in the following table.

Data	Label	Solution	Data	Label	Solution
$\mathbf{x}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$y_1 = -1$	$\lambda_1^{\star} = 2$	$\mathbf{x}_4 = \begin{pmatrix} -1\\ 0 \end{pmatrix}$	$y_4 = 1$	$\lambda_4^\star = 2$
$\mathbf{x}_2 = \begin{pmatrix} -2\\ -1 \end{pmatrix}$	$y_2 = -1$	$\lambda_2^{\star} = 0.74$	$\mathbf{x}_5 = \begin{pmatrix} -2\\ 1 \end{pmatrix}$	$y_5 = 1$	$\lambda_5^{\star} = 0.5$
$\mathbf{x}_3 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$	$y_3 = -1$	$\lambda_3^{\star} = 1.76$	$\mathbf{x}_6 = \begin{pmatrix} 1\\ 2 \end{pmatrix}$	$y_6 = 1$	$\lambda_6^\star = 2$

- a) Determine the support vectors. (6P)
- b) Determine the kernel-based classifier by specifying all the parameters. (6P)
 Hint: Round the numbers to the nearest thousandth, e.g., 0.0014 ≈ 0.001 or 0.0016 ≈ 0.002 or 0.0015 ≈ 0.002.
- c) Suppose that γ is very large so that the kernel function can be approximated by

$$K(\mathbf{x}_i, \mathbf{x}_j) = \begin{cases} 1 & \mathbf{x}_i = \mathbf{x}_j \\ 0 & \text{otherwise} \end{cases}$$

Determine the support vectors for this problem. (3P)

Problem 6. (13 points) Kernels for SVM:

- a) Determine the following kernel functions are valid kernels for support vector machines and explain the reason. (6P)
 - a) $K(\mathbf{x}_i, \mathbf{x}_j) = 1$ for all $\mathbf{x}_i, \mathbf{x}_j \in \mathbb{R}^p$.
 - **b)** $K(\mathbf{x}_i, \mathbf{x}_j) = \max_{k \in \{1, \dots, p\}} (x_i(k) x_j(k)) \text{ for } \mathbf{x}_i = (x_i(1), \dots, x_i(p))^T \text{ and } \mathbf{x}_j = (x_j(1), \dots, x_j(p))^T.$
 - c) $K(\mathbf{x}_i, \mathbf{x}_j) = |||\mathbf{x}_i||_2^2 ||\mathbf{x}_j||_2^2|$ for all $\mathbf{x}_i, \mathbf{x}_j \in \mathbb{R}^p$.
- **b)** Suppose that a kernel is given by $K(\mathbf{x}, \mathbf{y}) = 4(\mathbf{x}^T \mathbf{y})^2 + 3(\mathbf{x}^T \mathbf{y}) + 1$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$. Find the feature function for this kernel. Determine the dimension of the feature space. (7P)

Problem 7. (12 points) Clustering: Part I The set $\Phi = {\mathbf{x}_i \mid i = 1, ..., 6} \subset \mathbb{R}^2$, with

$$\mathbf{x}_1 = \begin{pmatrix} 3\\5 \end{pmatrix}, \ \mathbf{x}_2 = \begin{pmatrix} 1\\4 \end{pmatrix}, \ \mathbf{x}_3 = \begin{pmatrix} 0\\0 \end{pmatrix}, \ \mathbf{x}_4 = \begin{pmatrix} 1\\-1 \end{pmatrix}, \ \mathbf{x}_5 = \begin{pmatrix} -2\\-2 \end{pmatrix}, \ \mathbf{x}_6 = \begin{pmatrix} -1\\-4 \end{pmatrix}.$$

- a) The k-means clustering algorithm is used to partition Φ into two clusters: C_1 and C_2 . At a certain iteration, \mathbf{x}_1 and \mathbf{x}_5 are the center of C_1 and C_2 , respectively. Assign each sample in Φ to the appropriate clusters. Suppose the Euclidian distance is used for the assignment. (4P)
- b) Determine the centers of the two clusters according to the update in a). (2P)

Part II

The table below shows the pairwise dissimilarities between four points in a dataset Γ , where $\Gamma = \{P_1, P_2, P_3, P_4, P_5\}.$

	P_1	P_2	P_3	\mathbf{P}_4	P_5
P_1	0	0.9	0.8	0.3	0.4
P_2	0.9	0	0.5	0.2	0.1
P_3	0.8	0.5	0	0.6	0.2
P_4	0.3	0.2	0.6	0	0.7
P_5	0.4	0.1	0.2	0.7	0

Use the agglomerative clustering algorithm to partition Γ into two clusters: C_1 and C_2 . For this assignment, use the average linkage distance between C_1 and C_2 , which is given by

$$d(C_1, C_2) = \frac{1}{|C_1||C_2|} \sum_{i \in C_1, j \in C_2} \delta_{i,j},$$

where |.| denotes the cardinality, and $\delta_{i,j}$ is the dissimilarity between points *i* and *j*. (6P)

Problem 8. (6 points)

Regression:

Assume the signal-to-noise ratio (SNR) in dB at a certain receiver is indicated by the variable $x \in \mathbb{R}$. The receiver should have a bit error rate (BER) below a certain threshold, so that the message is decodable. The variable $y \in \{0, 1\}$ models this information; y = 0 indicates a decodable message, and y = 1 indicates a non-decodable message. Assume logistic regression is used to model y as a function of x.

- a) At a given iteration, $\nu = (\nu_0, \nu_1)$ denotes the estimated coefficients of the model, which are given by $(\nu_0, \nu_1) = (-0.05, 0.08)$. Assume the sigmoid function is used as a non-linear function in logistic regression. Estimate the probability that a message is decodable at x = 10 dB. (4P)
- **b**) Repeat **a**) using the following activation function (2P)

$$f(x) = \log_{10}(1 + \exp(x)).$$