

Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Emilio Balda

Exercise 3

Friday, November 3, 2017

Problem 1. (Properties of expectation and covariance) Two independent random vectors $\boldsymbol{X} = (X_1, X_2, \ldots, X_n)^{\mathrm{T}}$ and $\boldsymbol{Y} = (Y_1, Y_2, \ldots, Y_n)^{\mathrm{T}}$ with $n \in \mathbb{N}$ are given. Furthermore, c_X , c_Y , \boldsymbol{A} and \boldsymbol{b} are fixed quantities of adequate dimensions. Prove the following identities:

- a) (Scale and shift properties) E(AX + b) = A E(X) + b,
- **b)** (Linearity) $E(c_X X + c_Y Y) = c_X E(X) + c_Y E(Y)$,
- c) (Independence) $E(\mathbf{X}^T \mathbf{Y}) = E(\mathbf{X})^T E(\mathbf{Y}),$
- d) $\operatorname{Cov}(\boldsymbol{A}\boldsymbol{X} + \boldsymbol{b}) = \boldsymbol{A}\operatorname{Cov}(\boldsymbol{X})\boldsymbol{A}^{\mathrm{H}},$
- e) $\operatorname{Cov}(c_X X + c_Y Y) = |c_X|^2 \operatorname{Cov}(X) + |c_Y|^2 \operatorname{Cov}(Y).$

Problem 2. (Bivariate Distribution)

Suppose that $(Y_1, Y_2) \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where

$$\boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \quad \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}.$$

Then obtain an expression in terms of $\mu_1, \mu_2, \sigma_1, \sigma_2, \rho \in \mathbb{R}$ for the following distributions.

- **a)** The joint distribution $f_{Y_1,Y_2}(y_1,y_2)$.
- **b**) The distribution of Y_1 and the distribution of Y_2 .
- c) The conditional density $f_{Y_1}(y_1|y_2)$.

Problem 3. (Maximum Likelihood Estimation)

Suppose that the random variable X is absolutely continuous with the density $f_X(x)$ where

$$f_X(x;\lambda) = \begin{cases} \lambda e^{-\lambda x} & x > 0\\ 0 & x \le 0 \end{cases}$$

where $\lambda > 0$. Assume that we want to use Maximum Likelihood Estimation (MLE) to estimate λ from *n* independent observations of *X*, denoted as $\mathbf{x} = (x_1, \ldots, x_n)$.

- a) Write down the log-likelihood function.
- **b)** What is the MLE of the parameter λ ?