Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Emilio Balda

Exercise 3

Friday, November 3, 2017
Problem 1. (Properties of expectation and covariance) Two independent random vectors $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{\mathrm{T}}$ and $\boldsymbol{Y}=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{\mathrm{T}}$ with $n \in \mathbb{N}$ are given. Furthermore, c_{X}, c_{Y}, \boldsymbol{A} and \boldsymbol{b} are fixed quantities of adequate dimensions. Prove the following identities:
a) (Scale and shift properties) $\mathrm{E}(\boldsymbol{A X}+\boldsymbol{b})=\boldsymbol{A} \mathrm{E}(\boldsymbol{X})+\boldsymbol{b}$,
b) (Linearity) $\mathrm{E}\left(c_{X} \boldsymbol{X}+c_{Y} \boldsymbol{Y}\right)=c_{X} \mathrm{E}(\boldsymbol{X})+c_{Y} \mathrm{E}(\boldsymbol{Y})$,
c) (Independence) $\mathrm{E}\left(\boldsymbol{X}^{T} \boldsymbol{Y}\right)=\mathrm{E}(\boldsymbol{X})^{T} \mathrm{E}(\boldsymbol{Y})$,
d) $\operatorname{Cov}(\boldsymbol{A} \boldsymbol{X}+\boldsymbol{b})=\boldsymbol{A} \operatorname{Cov}(\boldsymbol{X}) \boldsymbol{A}^{\mathrm{H}}$,
e) $\operatorname{Cov}\left(c_{X} \boldsymbol{X}+c_{Y} \boldsymbol{Y}\right)=\left|c_{X}\right|^{2} \operatorname{Cov}(\boldsymbol{X})+\left|c_{Y}\right|^{2} \operatorname{Cov}(\boldsymbol{Y})$.

Problem 2. (Bivariate Distribution)
Suppose that $\left(Y_{1}, Y_{2}\right) \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where

$$
\boldsymbol{\mu}=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right], \quad \boldsymbol{\Sigma}=\left[\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right] .
$$

Then obtain an expression in terms of $\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, \rho \in \mathbb{R}$ for the following distributions.
a) The joint distribution $f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)$.
b) The distribution of Y_{1} and the distribution of Y_{2}.
c) The conditional density $f_{Y_{1}}\left(y_{1} \mid y_{2}\right)$.

Problem 3. (Maximum Likelihood Estimation)

Suppose that the random variable X is absolutely continuous with the density $f_{X}(x)$ where

$$
f_{X}(x ; \lambda)= \begin{cases}\lambda e^{-\lambda x} & x>0 \\ 0 & x \leq 0\end{cases}
$$

where $\lambda>0$. Assume that we want to use Maximum Likelihood Estimation (MLE) to estimate λ from n independent observations of X, denoted as $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$.
a) Write down the log-likelihood function.
b) What is the MLE of the parameter λ ?

