Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Emilio Balda

Exercise 4

Friday, November 10, 2017

Problem 1. (PCA in 2-dimensional space) Suppose that for n samples, the sample covariance matrix \mathbf{S}_{n} is given by

$$
\mathbf{S}_{n}=\left(\begin{array}{cc}
14 & -14 \\
-14 & 110
\end{array}\right)
$$

a) Calculate the spectral decomposition $\mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$ of \mathbf{S}_{n} by determining the matrices \mathbf{V} and Λ.
b) Determine the best projection matrix \mathbf{Q} to transform the two-dimensional samples to a one-dimensional data.
c) Determine the residuum $\frac{1}{n-1} \max _{\mathbf{Q}} \sum_{i=1}^{n}\left\|\mathbf{Q} \mathbf{x}_{i}-\mathbf{Q} \overline{\mathbf{x}}_{n}\right\|^{2}$ for the above choice of \mathbf{Q}.

Problem 2. (PCA in 2-dimensional space) Consider four vectors given as follows

$$
\mathbf{x}_{1}=\binom{1}{0}, \quad \mathbf{x}_{2}=\binom{-1}{0}, \quad \mathbf{x}_{3}=\binom{0}{1}, \quad \mathbf{x}_{4}=\binom{0}{-1}
$$

a) Calculate the sample covariance matrix \mathbf{S}_{n} and the spectral decomposition $\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}$ of \mathbf{S}_{n} by determining the matrices \mathbf{V} and $\boldsymbol{\Lambda}$.
b) Determine the best projection matrix \mathbf{Q} to transform the two-dimensional samples to a one-dimensional data and calculate the projection of \mathbf{x}_{1} and \mathbf{x}_{2}.

Problem 3. (Spike model) Fix $p=500$ as the dimension of the space \mathbb{R}^{p}. Suppose that the data is generated from two one dimensional subspaces modeled by $\sqrt{0.2} G_{1} \boldsymbol{v}_{1}$ and $\sqrt{0.5} G_{2} \boldsymbol{v}_{2}$, where \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are orthogonal unit norm vectors in \mathbb{R}^{p}, and G_{1} and G_{2} are independent standard normal random variables. The high dimensional noise $\boldsymbol{U} \in \mathbb{R}^{p}$ is independent of both G_{1} and G_{2} and is modeled as a standard normal random vector. The covariance matrix of this model $\boldsymbol{X}=\boldsymbol{U}+\sqrt{0.2} G_{1} \boldsymbol{v}_{1}+\sqrt{0.5} G_{2} \boldsymbol{v}_{2}$ is described by:

$$
\operatorname{Cov}(\boldsymbol{X})=\boldsymbol{I}_{p}+0.2 \boldsymbol{v}_{1} \boldsymbol{v}_{1}^{\mathrm{T}}+0.5 \boldsymbol{v}_{2} \boldsymbol{v}_{2}^{\mathrm{T}} .
$$

Suppose that $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$ are i.i.d. distributed with $\operatorname{Cov}\left(\boldsymbol{X}_{i}\right)=\operatorname{Cov}(\boldsymbol{X})$.
a) Find the minimum number n_{2} of samples such that only the dominant eigenvalue is visible. Calculate the distance $\left\langle\boldsymbol{v}_{2}, \boldsymbol{v}_{\text {dom }}\right\rangle$ for this case.
b) Find the minimum number n_{1} of samples such that both dominant eigenvalues are visible. Calculate the distance $\left\langle\boldsymbol{v}_{2}, \boldsymbol{v}_{\text {dom }}\right\rangle$ for this case. Sketch the Marchenko-Pastur density for the latter case along with both dominant eigenvalues of the sample covariance matrix \mathbf{S}_{n}.

